Annals of Mathematics and Physics
https://www.peertechzpublications.com/journals/annals-of-mathematics-and-physics
A Peertechz Open Access Journalen-usProof of Einstein’s postulates28 Apr, 2022
https://www.peertechzpublications.com/articles/AMP-5-135.php
Based on the assumption that the experiment confirms the STR, it is shown that the value of the speed of light is a very slowly decreasing function of its frequency, so that at a frequency of 2.2989.10-18 S-1, the speed of light becomes zero. Such light represents resting particles – photonics that could serve as the Absolute Reference System, but due to their negligible mass, do not have a noticeable effect on the processes taking place. This explains Einstein’s principle of relativity. The formulas for the change in the speed and frequency of light during the transition from one IRS to another, within the measurement error, remain unchanged, which proves the postulate of the constancy of the speed of light in any IRS. It is shown that all STR formulas include not the speed of light, but the fundamental constant C, equal to the speed of light with a frequency ν = ∞. The proposed explanation of the correctness of Einstein’s postulates is logically, apparently, the only possible one.On the shape and fate of our Universe25 Mar, 2022
https://www.peertechzpublications.com/articles/AMP-5-134.php
Einstein’s special and general theories of relativity revolutionized physics and cosmology. Newton assumed four identities namely mass, energy, space, and time. He told that space is absolute. Einstein modified and refined Newtonian concepts s by postulating that mass-energy and space-time. This enabled Einstein to find special relativity theory which predicted the variance of mass with velocity, the equivalent of mass and energy, time dilation, and length contraction. The extension and generalization of special relativity theory is the outcome of general relativity theory which is the geometrical interpretation of gravity. Almost all the predictions of Einstein’s general relativity theory have been experimentally verified. By delving into the equations of general relativity, the famous Russian mathematician Alexander Freedman found that the geometry of our Universe has only three possibilities, namely, open, closed, and flat. Freedman’s publication in the 1920s paved the way to study the geometry and fate of our Universe. Recently, NASA’s WMAP spacecraft and ESA’s Planck probes and observations revealed that the geometry of our Universe is flat with a marginal error of 0.04%. But to this day, there is no mathematical proof for these observations. In this short work, by applying the multiplication and division laws of number theory to cosmic triangles the author attempts to show that the shape/geometry of our Universe is FLAT.On Algebra, Cosmic Triangles and the shape of our Universe25 Mar, 2022
https://www.peertechzpublications.com/articles/AMP-5-133.php
The curvature parameter k and the density parameter omega play the dominant phenomena determining the fate of our universe. According to these two scales, the geometry of the universe has three possibilities namely, flat, open, or closed. The flat and open universe will have continual expansion. But the closed universe will turn around and collapse. If k is zero, the universe is flat, if it is greater than zero, it is closed and if k is less than zero the universe will be open. And if the density parameter Omega is one (1), the universe is flat, if it is greater than one, the universe will be closed and if it is less than one, the universe is open. The main thing is that if the sum of the interior angles of the cosmic triangles is equal to 180 degrees, the geometry of our universe is flat /Euclidean If it is less than 180 degrees, the shape of our universe is open/ hyperbolic and if it is greater than 180 degrees it is closed/elliptic. In this short work, by applying the fundamental operations of classical algebra to the cosmic triangles, the author attempts to prove that the shape of our universe is flat.Logic proves that time does not get faster or slower (the universe is not produced by the singularity big bang)16 Mar, 2022
https://www.peertechzpublications.com/articles/AMP-5-132.php
I use the axiom that equal conditions must have the same result.
Axiom proves that no matter how the velocity of an object changes, the time of all objects remains unchanged and unified.
Time can be expressed as an eternal constant.
Time belongs to the abstract concept of material attributes, and time is not a material concept.
There is an abstract concept of uniform velocity in the universe (For example, the velocity of light wave in vacuum is constant “C”).
According to the constant and uniform velocity of time, an important physical theory is proved: the universe is not produced by the singularity big bang.
Mathematical classification code: 00A79;83F05;00A30;03A05;70A05;70F20;03A10;03F03. Drag force through gases and plasma25 Jan, 2022
https://www.peertechzpublications.com/articles/AMP-5-131.php
The drag force in a gas (previously derived by Stokes and Rayleigh) is derived by means of the molecular kinetics (transport equation of the momentum). Two regimes of resistance to motion are identified, governed by the relation of the velocity to the thermal (molecular) velocity. They correspond to the molecular movement, for small velocities, or to the hydrodynamic motion for high velocities. In the former case sound waves are not excited, and energy is dissipated by viscosity (friction), while in the latter case the energy is dissipated by the excitation of the sound waves. Also, the treatment is applied to the plasma. It is shown that in usual plasmas it is unlikely that the body motion excites plasmons. On the special spherical triangles for physical and cosmological applications25 Nov, 2021
https://www.peertechzpublications.com/articles/AMP-4-130.php
It is well known that a spherical triangle of 270 degree triangle is constructible on the surface of a sphere; a globe is a good example. Take a point (A) on the equator, draw a line 1/4 the way around (90 degrees of longitude) on the equator to a new point (B). ... The angle at each of the vertices (A, B, C) will be ninety degrees, for a total of 270 degrees as shown in Figure 1. It is also possible to draw a spherical triangle whose interior angle sum is equal to 360 degrees. Also, it is possible to construct a special spherical triangle whose interior angle sum up to 540 degrees.
An introduction to the superunified theory of quantum fields & fundamental interactions (Discoveries in pure mathematics)19 Nov, 2021
https://www.peertechzpublications.com/articles/AMP-4-129.php
This is intended to describe the physical Universe as self-excited and self-organized mathematical continuum. There does exist the universal pure (not applied) mathematical machine perceived by the intelligent observers in a capacity of certain material world. In this short article we are able to indicate only some key points of the theory which suggests practically infinite amount of combinatorics.Paintings crack initiation time caused by microclimate17 Nov, 2021
https://www.peertechzpublications.com/articles/AMP-4-128.php
The current paper aims to use an irreversible cohesive zone model to investigate the effects of temperature and relative humidity cycles on multilayer thin-film paintings. The homogenous one-dimensional paint layers composed of alkyd and acrylic gesso over a canvas foundation (support) with known constant thicknesses are considered as the mechanical model of painting. Experimental data was used for mathematical modeling of canvas as a linear elastic material and paint as a viscoelastic material with the Prony series. Growth of crack through the length of the paint layers under the low amplitude cyclic stresses are modeled by cyclic mechanical loadings. The three-dimensional system is modeled using a finite element method. Fatigue damage parameters such as crack initiation time and maximum loads are calculated by an irreversible cohesive zone model used to control the interface separation. In addition, the effects of initial crack length and layers thickness are studied. With the increase of the painting thickness and/or the initial crack length, the value of the maximum force increases. Moreover, by increasing the Relative Humidity (RH) and the temperature difference at loading by one cycle per day, the values of initiation time of delamination decrease. It is shown that the thickness of painting layers is the most important parameter in crack initiation times and crack growth rate in historical paintings in museums and conservation settings. Random oscillations of nonlinear systems with distributed Parameter16 Nov, 2021
https://www.peertechzpublications.com/articles/AMP-4-127.php
The article analyzes random vibrations of nonlinear mechanical systems with distributed parameters. The motion of such systems is described by nonlinear partial differential equations with corresponding initial and boundary conditions. In our case, the system as a whole is limited, so any motion can be considered as the sum of the natural oscillations of the system, i.e. in the form of an expansion of the boundary value problem in terms of own functions. The use of the theory of random processes in the calculation of mechanical systems is a prerequisite for the creation of sound design methods and the creation of effective vibration protection devices, these methods allow us to investigate dynamic processes, to determine the probabilistic characteristics of displacements of points of the system and their first two derivatives. In the work established these conditions are met, they provide effective vibration protection of the system under study with wide changes in the pass band of the frequencies of the random vibration effect, and the frequency of the disturbing force is much greater than the natural frequency of the system as a whole, in addition, with an increase in the damping capacity of the elastic-damping link of the system, the intensity of the random process significantly decreases, which in turn leads to a sharp decrease in the dynamic coefficient of the system.On the Bogolubov’s chain of kinetic equations, the invariant subspaces and the corresponding Dirac type reduction14 Oct, 2021
https://www.peertechzpublications.com/articles/AMP-4-126.php
We study a special class of dynamical systems of Boltzmann-Bogolubov and Boltzmann-Vlasov type on infinite dimensional functional manifolds modeling kinetic processes in manyparticle media. Based on geometric properties of the manyparticle phase space we succeded in dual analysing of the infinite Bogolubov hierarchy of manyparticle distribution functions and their Hamiltonian structure. Moreover, we proposed a new approach to invariant reducing the Bogolubov hierarchy on a suitably chosen correlation function constraint and deducing the related modified Boltzmann-Bogolubov kinetic equations on a finite set of multiparticle distribution functions. Research on rolling bearing fault feature extraction based on entropy feature16 Aug, 2021
https://www.peertechzpublications.com/articles/AMP-4-125.php
In large machinery, the most common element we can use is rolling bearing. When the rolling bearing fails, it is very likely to affect the normal operation of the equipment, or even cause danger. Therefore, it is necessary to monitor and diagnose the bearing fault in advance. The most important step in fault diagnosis is feature extraction. This is the research content of this paper. In this paper, the approximate entropy, the sample entropy and the information entropy are analyzed, and the feature is extracted to diagnose the rolling bearing fault. The specific research contents are as follows: (1) Firstly, the concepts of approximate entropy, sample entropy and information entropy are introduced briefly, and the approximate entropy, sample entropy and information entropy of rolling bearing vibration signals under different fault modes are calculated. The feasibility and shortcomings of the features extracted from these three entropy in the fault characteristics of rolling bearing are analyzed. (2) In order to make up for their defects, a method of fault feature extraction based on approximate entropy, sample entropy and information entropy is proposed, and its feasibility is verified. (3) Simulation experiments are carried out to calculate the accuracy of fault feature extraction based on the joint analysis of approximate entropy, sample entropy and information entropy.Waves of the dynamics of the rate of increase in the parameters of Covid-19 in Russia for 03/25/2020-12/31/2020 and the forecast of all cases until 08/31/202127 Jul, 2021
https://www.peertechzpublications.com/articles/AMP-4-124.php
In applied mathematics and statistics, only linear equations are still used. The article proposes the sum of asymmetric wavelets with variable amplitudes and periods of oscillation. As a result, the behavior of any object or subject is given by the sum of vibrations. Using the identification method based on statistical daily data on four indicators of the dynamics of the rate of Covid-19, quanta of the pandemic behavior in the territory of the Russian Federation from March 25 to December 31, 2020 were identified. It is shown that the rates are infected, cured, died, and “all cases = infected + cured + died” in Russia got two superimposed bulges. Based on the computational capabilities of CurveExpert-1.40, 4-5 components were jointly identified with an overall correlation coefficient above 0.86 for infected and over 0.99 for all cases. It has been proven that the spread of the virus has the form of a set of finite-dimensional wavelets with variable amplitudes and, as a rule, with a decreasing oscillation period. By modeling the standard deviation by the serial numbers of the wavelets, it was proved that the parameters of the Covid-19 pandemic have fractal distributions. For the velocity parameter “died”, the main bulge does not reach its maximum. And the second member of the trend peaked at 164 deaths on 06/18/2020, and it will leave the scene from 03/23/2021. The third member of the model, aimed at countering mortality, at the beginning of the time series on 03/25/2020 received a fluctuation period of 355 days. By the date of December 31, 2020, the fluctuation period became equal to 278 days. More often with constant half-periods of 3.5 and 16.1 days, fluctuations occurred. In this case, the 70th term gives a constant oscillation period, even 1.88 days. The average relative modeling error in modulus is equal for speeds: 1) died - 2.09; all cases - 3.22; cured - 17.17 and infected 29.91%. In this case, the range of error values changes in the following intervals: 1) died from -18.93 to 11.95%; all cases from -31.37 to 20.20%; cured from -248.8 to 396.0%; infected from -1934.0 to 779.7%. According to the distributions of the relative error after 1%, the following rating was obtained: 1) the correlation coefficient of 0.9807 for the speed died; 2) at 0.9768 the rate of all cases; 3) 0.8640 has been cured; 4) 0.8174 - infected. The fractality coefficient is equal to the ratio of the standard deviations of the linear model to the last component: for infected 3572.76 / 310.97 = 11.5; cured 5.8; died 24.3 and all cases 9.6. Further, due to the high range of relative error, the rates of cured and infected are excluded from forecasting. The forecast for the rate of deaths was carried out until 02/14/2021. The right border at the forecast horizon was adopted due to the fact that negative values appear from 15.02.2021. For a longer time interval from 01.01.2021 to 31.08.2021 the model allows predicting the rate of change of all cases. To reduce the relative modeling error, it is recommended to re-identify the model of the dynamics of the parameters died and all cases every three weeks. The identification method is applicable to any statistical series, and not only to dynamic ones.From linear algebra to quantum information20 Jul, 2021
https://www.peertechzpublications.com/articles/AMP-4-123.pdf
Anticipating the realization of quantum computers, we propose the most reader-friendly exposition of quantum information and qubits theory. Although the latter lies within framework of linear algebra, it has some flavor of quantum mechanics and it would be easier to get used to special symbols and terminologies. Quantum mechanics is described in the language of functional analysis: the state space (the totality of all states) of a quantum system is a Hilbert space over the complex numbers and all mechanical quantities are taken as Hermite operators. Hence some basics of functional analysis is necessary. We make a smooth transition from linear algebra to functional analysis by comparing the elements in these theories: Hilbert space vs. finite dimensional vector space, Hermite operator vs. linear map given by a Hermite matrix. Then from Newtonian mechanics to quantum mechanics and then to the theory of qubits. We elucidate qubits theory a bit by accommodating it into linear algebra framework under these precursors.Dirac spinor’s transformation under Lorentz mappings15 Jul, 2021
https://www.peertechzpublications.com/articles/AMP-4-122.php
For a given Lorentz matrix, we deduce the Dirac spinor’s transformation in terms of four complex quantities.Numerical investigations for flow past two square rods in staggered arrangement through Lattice Boltzmann method03 Jul, 2021
https://www.peertechzpublications.com/articles/AMP-4-121.php
A numerical study for two dimensional (2-D) incompressible flow past over two square rods in staggered arrangement detached with a rectangular control rod is conducted by applying single-relaxation-time lattice Boltzmann method (SRT-LBM). This study is conducted basically to reduce the fluid forces and to suppress the vortex shedding through passive control method under the effect of gap spacing between the rods and Reynolds number. The gap spacing (g = s/D) between the rods is taken as g = 1, 3 and 6 whereas, Reynolds number Re= u∞ D/γ is selected within the range of Re = 80 – 200. First validity of code and effect of computational domain along with effect of uniform inflow velocity is checked by considering upstream, downstream and height of computational domain respectively, at Lu = 7.5d, Ld = 30d and H = 14d. After that the effect of gap spacing and Reynolds number on flow structure mechanism is studied. The acquired results are obtained in terms of vorticity contour visualization, power spectrum analysis of lift coefficients and force statistics. Here, three different types of flow regimes, named as i) Irregular Single Bluff Body (ISBB), ii) Flip Flopping (FF) and iii) Anti Phase Synchronized (APS) flow regimes are observed at different values of gap spacing and Reynolds number. In study of force statistics, the values of mean drag coefficients (Cdmean), root mean square of drag coefficients (Cdrms), root mean square of lift coefficients (Clrms) and strouhal number (St) of two square rods are calculated. The values of mean drag coefficients for rod R1 is greater than that of rod R2. The Cdmean for R2 increases with increment in the values of Reynolds, while as Cdmean for R1 having mixed trend. The maximum value of Cdmean is attained at (g, Re) = (1,80) that is 1.8971 for R1 as compared to R2, where existing flow regime is the Irregular single bluff body (ISBB) flow regime. The largest value of Strouhal number is obtained for R2 at (g, Re) = (6, 150) that is 0.1608 along with Anti phase synchronized (APS) flow regime.Application of algebra to trisect an angle of 60 degree19 Apr, 2021
https://www.peertechzpublications.com/articles/AMP-4-120.php
Trisection of an angle, doubling the cube, squaring the circle, to draw a regular septagon and to deduce Euclid V from Euclid I to IV are the famous classical impossibilities. Recently, Sivasubramanian and Kalimuthu jointly and independently found several solutions for the parallel postulate problem. Their findings have been published in various peer reviewed international journals. In this work, by applying linear algebraic equations the authors have attempted and trisected 60 degree without using a protractor.Theoretical calculation of self-propagating high-temperature synthesis (SHS) preparation of AlB1223 Mar, 2021
https://www.peertechzpublications.com/articles/AMP-4-119.php
Although experimental results of preparing AlB12 by self-propagating high-temperature synthesis using Mg-B2O3-Al2O3 as raw material has been studied, the theoretical calculations for the preparation of AlB12 have not been examined as thoroughly. In this article, for the first time, we report on the study of theoretical calculation and the adiabatic temperature, calculated, and compared with the actual reaction temperature. The Gibbs free energy for each level of reaction is also calculated. The calculation results show that the adiabatic temperature is 2789.5 K, the standard Gibbs free energy of each reaction is less than 0, and the reaction can proceed spontaneously, which is consistent with the results of the experiment.Energy and exergy analyses of combustion process in a DI diesel engine fuelled with diesel-biodiesel blends15 Mar, 2021
https://www.peertechzpublications.com/articles/AMP-4-118.php
Exergy analysis is achieved by assessing exergies related to the inlet fuel and air, output power, heat loss, gas exhaust loss and destruction or system irreversibility. The exergy fraction of each component is considered for all mixtures by dividing the individual exergy quantity into the exergy of the fuel. In the present investigation, the combustion process has been simulated in a DI diesel engine (OM314) with biodiesel fuel different Blends (B20, B40, B100) of soybean at full load and 1200 rpm by a thermodynamic model using both thermodynamics first and second laws of thermodynamics. The results showed good agreement with the experimental pressure. The results of the analysis of energy and availability balance show that the first and second laws efficiency for pure biodiesel fuel is more than the other two fuel and total availability. indicated work availability, the heat loss availability, burned fuel availability and irreversibility for 20% biodiesel fuel are more than two other fuels.An astrobiological theorem17 Oct, 2020
https://www.peertechzpublications.com/articles/AMP-3-117.php
The structure of the human brain reflects multifarious random influences of terrestrial and phylogenetic history, yet the higher mental functions correlated with this unique cerebral neurophysiology are generally assumed to embody universals common to intelligences independent of biological substrate. This assumption is deeply embedded in scientific and popular cultures. However, this idea has not been explicitly investigated. The present study proves that any sufficiently advanced organism of non-zero, finite volume (with boundary) must have a ‘natural’ logic equivalent to Sentential (propositional) Calculus (SC). This commonalty arises from the essential transduction from external to internal milieu that must occur at any organism’s boundary surface. This transduction encodes SC in sensory data and the proof demonstrates that any internal inductive construct—including mathematics and physics—inherits this logical bias. The topological origin of deductive logic not only demonstrates a universal commonality subject to very weak constraints, but also demonstrates a surprising biological origin of foundational principles in mathematics and physics.Application of logistic regression equation analysis using derivatives for optimal cutoff discriminative criterion estimation19 Aug, 2020
https://www.peertechzpublications.com/articles/AMP-3-116.php
Background: Sigmoid curve function is frequently applied for modeling in clinical studies. The main task of scientific research relevant to medicine is to find rational cutoff criterion for decision making rather than finding just equation for probability calculation.
The objective of this study is to analyze the specific features of logistic regression curves in order to evaluate critical points and to assess their implication for continuous predictor variable dichotomization in order to provide optimal cutoff criterion for decision making.
Methods: Second order and third order derivatives were used to analyze estimated logistic regression function, critical values of independent continuous variable that correspond to zero points of second and third derivative were calculated for each logistic regression equation. Using those values continuous predictors of each logistic regression equations were converted into dichotomized scales using 1 value that correspond to second order derivative and 2 values that correspond to zero points of third derivative then receiver operating characteristics of estimated equations with dichotomized predictor were assessed.
Results: Sigmoid curve of logistic regression has the same structure with inflection point corresponding probability 0.5 (zero value of second derivative) and maximal torsion (zero values of third derivative) corresponding 0.2113 and 0.7886 probability values. Thresholds accounting for predictor values that correspond to zero values of second and third derivative provide estimation of logistic regression applying dichotomized predictor with optimal ratio of sensitivity, specificity and overall accuracy with maximal area under curve.
Conclusion: Analysis of logistic regression equation with continuous predictor applying derivatives help to choose optimal thresholds that provide maximally effective discriminative functions with priority sensitivity or specificity. Using this dichotomization discriminative function can be adjusted to the needs of particular task or study depending which characteristic is in priority – sensitivity or specificity.On freedman equation and the shape of our universe17 Jul, 2020
https://www.peertechzpublications.com/articles/AMP-3-115.php
In the nineteen twenties, the famous Russian mathematician Alexander Freedman formulated an equation which determines the shape and fate of our universe. Freedman derived his equation in general relativity. The equation reveals that the geometry of the universe may be flat, closed or open. The Euclidean, hyperbolic and spherical geometries describe the flat, open and closed universes respectively. Both NASA’s WMAP and ESA’s PLANCK mission show the cosmological curvature parameter, ΩK, to be 0.000±0.005, consistent with a flat universe. Many observational cosmological probes revealed that the universe is flat obeying the classical Euclidean geometry. But till this day, there is no mathematical formulation/proof for the geometry of our universe. In this work, the attempts to establish that the shape of our universe is flat.Time series analysis of Holt model and the ARIMA Model facing Covid-1903 Jul, 2020
https://www.peertechzpublications.com/articles/AMP-3-114.php
Background: Since the first appearance of the novel coronavirus in Wuhan in December 2019, it has quickly swept the world and become a major security incident facing humanity today. While the novel coronavirus threatens people’s lives and safety, the economies of various countries have also been severely damaged. Due to the epidemic, a large number of enterprises have faced closures, employment has become more difficult, and people’s lives have been greatly affected. Therefore, to establish a time series model for Hubei Province, where the novel coronavirus first broke out, and the United States, where the epidemic is most severe, to analyze the spreading trend and short-term forecast of the new coronavirus, which will help countries better understand the development trend of the epidemic and make more adequate preparation and timely intervention and treatment to prevent the further spread of the virus.
Dynamic model of infectious diseases on the coronavirus disease 201912 Jun, 2020
https://www.peertechzpublications.com/articles/AMP-3-113.php
Under the general trend of globalization, historically and newly discovered infectious diseases are seriously threatening people’s health and lives, including: Avian influenza H7N9, AIDS HIV, Influenza A H1N1, etc., a new type of corona that is currently spreading in many countries around the world Viral pneumonia (C0VID-19), there is currently no good therapeutic drug, which seriously affects human survival and development. The rapid spread of the new coronavirus in Hong Kong, while starting the epidemic prevention work, uses mathematical modeling methods to construct the propagation model, and then calculates the inflection point for better prevention and control of the spread of epidemic work. The spread of Hong Kong was analyzed, and the quantitative relationship between the growth rate of the number of new coronavirus infections and time was explored.Analysis of the axial stability for an assembly of optical modes with stochastic fluctuations type Markov chain12 May, 2020
https://www.peertechzpublications.com/articles/AMP-3-112.pdf
We describe the engineering of optical modes whose axial structure follows fluctuations of Markov-chain-type.Standard model in a Nutshell07 Mar, 2020
https://www.peertechzpublications.com/articles/AMP-3-111.pdf
Understanding the complexity of the Standard Model (SM) of particle physics is crucial for young students aiming to pursue their future higher studies in physics. Poisson structures on (non)associative noncommutative algebras and integrable Kontsevich type Hamiltonian systems30 Jan, 2020
https://www.peertechzpublications.com/articles/AMP-3-110.php
We have revisited the classical Poisson manifold approach, closely related to construction of Hamiltonian operators, generated by nonassociative and noncommutative algebras. In particular, we presented its natural and simple generalization allowing effectively to describe a wide class of Lax type integrable nonlinear Kontsevich type Hamiltonian systems on associative noncommutative algebras.Modeling of active thermography through uncertainty quantifi cation of parameters of the heat transfer equation19 Nov, 2019
https://www.peertechzpublications.com/articles/AMP-2-109.php
Active thermography is an experimental technique used to analyze samples of materials or entire structures without destroying them, by means of a heat source, such as a laser beam of a given power.An analysis of ammonia synthesis by the model of Selective Energy Transfer (SET)26 Sep, 2019
https://www.peertechzpublications.com/articles/AMP-2-108.php
The SET theory implies that energy is transferred from the catalyst system via infrared radiation to the molecules that are supposed to react. In previous investigations it has been demonstrated that the activation of the reacting species-as long as the molecules are infrared active-can occur at low adsorption strength. However, for molecules that are IR inactive, e.g. dinitrogen, this is not possible.The quadratic Poisson structures and related nonassociative noncommutative Zinbiel type algebras16 Sep, 2019
https://www.peertechzpublications.com/articles/AMP-2-107.pdf
There are studied algebraic properties of the quadratic Poisson brackets on nonassociative noncommutive algebras, compatible with their multiplicative structure. Their relations both with differentiations of the symmetric tensor algebras and Yang-Baxter structures on the adjacent Lie algebras are demonstrated.The dispersionless completely integrable heavenly type Hamiltonian flows and their differential-geometric structure28 Aug, 2019
https://www.peertechzpublications.com/articles/AMP-2-106.pdf
There are reviewed modern investigations devoted to studying nonlinear dispersiveless heavenly type integrable evolutions systems on functional spaces within the modern differential-geometric and algebraic tools. Main accent is done on the loop diffeomorphism group vector fields on the complexified torus and the related Lie-algebraic structures, generating dispersionless heavenly type integrable systems.Mid-point technique for calculating divergent integrals10 Jul, 2019
https://www.peertechzpublications.com/articles/AMP-2-105.php
A mid-point technique is introduced to overcome the diffi culties in other techniques. The modied
e⁄ective interaction quark potential which uses to calculate different properties of the NJL model such
as the constituent quark mass, pressure, and energy density is solved using the present technique. The
present method gives good accuracy for the mathematical problem and avoids the physical di¢ culty in
the previous works.Black quanta. On the thermodynamics of the black holes02 Jul, 2019
https://www.peertechzpublications.com/articles/AMP-2-104.pdf
It is shown that the quantized internal motion of the black holes consists of Planck quanta (Planck
mass, length, time, etc), which may be called black quanta. The mass of the black hole is a integral
multiple of the Planck mass, and the radius of the black hole (Schwarzschild radius) is an integral multiple
of the Planck length. This circumstance arises from the proportionality of the black hole radius and mass.
The statistical physics and the thermodynamics of the black holes are derived herein from the statistical
motion of the black quanta.Space Equations04 Mar, 2019
https://www.peertechzpublications.com/articles/AMP-2-103.php
Trying to observe the reason behind the differences in the nature of space that exists on earth and on the outer space led to the path were space and gravity meets. This paper presents a theory which comprises of an already existing effect that has helped to determine the following;
• Space constant.
• The Relationship between Space and Gravity.
• Formulation of Space Equations.
• Verification of the value of acceleration due to gravity, mass, radius of most planetary bodies.
• The Fate of the existence of parallel universes.Integral formulations for 1-D Biharmonic and Second Order Coupled Linear and Nonlinear Boundary Value Problems29 Oct, 2018
https://www.peertechzpublications.com/articles/AMP-1-101.php
Integral formulations based on a boundary-domain interpretation of the boundary element method
(BEM) are applied to develop the numerical solutions of biharmonic and second order coupled linear and
nonlinear boundary value problems.