Introduction

Most of the borides are crystals with high hardness and melting point [1-4]. Stable chemical properties and a wide range of applications make it widely used in composite materials, semiconductors, and in various areas of national defense, such as radiation protection [5-8]. Among them, \(\text{AlB}_{12} \) has a special electronic structure and bonding characteristics \([9,10]\). It can effectively adjust the conductivity of semiconductor materials, and thus is extensively employed in conductors and semiconductor materials. In addition to the above characteristics, the content of boron in \(\text{AlB}_{12} \) is extremely high, reaching 82.8%, which is very promising as neutron shielding material \([11-13]\).

Ceramic powders are usually synthesized by traditional sintering methods \([14-16]\). However, the use of this method to synthesize ceramic powder takes a long time, consumes a great deal of energy and pollution \([17]\). Self-propagating high-temperature synthesis (SHS) is a unique technique for synthesizing materials by self-heating and self-conduction of high chemical reaction heat between reactants. This technology was first discovered by Merzhanov et al., in their research on the combustion of solid propellants in rockets and was announced in 1967. Compared with the conventional sintering method, the advantages of the SHS method can be summarized as follows: (1) It is time saving and makes full use of energy \([18]\). (2) It requires only simple equipment and processes \([19]\). (3) The high product purity and product conversion rate are close to 100% \([20]\). (4) It can not only produce ceramic powder, but if the proper amount of pressure is applied at the same time, high-density combustion products can also be produced \([21]\). (5) High output \([22]\).

In previous studies, \(\text{AlB}_{12} \) powder was fabricated by using the SHS method \([23-25]\). The calculation results of preparing...
AlB$_{12}$ with Mg, Al$_2$O$_3$, and B$_2$O$_3$ as raw materials show that the adiabatic temperature of the system is 2789.5K, which satisfies the self–propagating reaction conditions. Further, the phase analysis results show that there is no matter in air or argon, the self–propagating powder and the acid-washed self–propagating powder all have Mg$_{0.4}$Al$_{2.4}$O$_4$ impurities, and the purity of the prepared AlB$_{12}$ is not high.

Although AlB$_{12}$ is produced, Mg$_{0.4}$Al$_{2.4}$O$_4$ has not been removed and still exists. In this work, Al, B$_2$O$_3$ and Mg, Al, B$_2$O$_3$ were used as raw materials to conduct experimental studies on self–propagating synthesis of AlB$_{12}$.

Experimental procedure

The starting materials used in this research were Al powder (purity>99% Al, average particle size 50 μm, provided by Dandong Chemical Research Institute, Dandong, China), B$_2$O$_3$ powder (purity>99%, average particle size 96 μm, provided by Dandong Chemical Research Institute, Dandong, China), and Mg powder (purity>98%, average particle size 100 μm, provided by Dandong Chemical Research Institute, Dandong, China).

The steps used in the self–propagating process to synthesize AlB$_{12}$ ceramic powder are as follows: (1) Weigh a certain amount (in proportion to the reaction equation) of the original material powder, place it in the ball milling tank, and mix the ball mill for 2 hours. (2) Intercept the resistance wire and connect it to the two poles of the self–propagating device and place the material in the atmosphere with one end close to the resistance wire. (3) Start the ignition device and slowly increase the current. When the pointer fluctuates sharply, reduce the current and keep the current increasing steadily. Finally, the resistance wire will reach a molten state when the material is induced to burn, and the current is turned off. (4) The reaction product is pulverized and sieved with 160 meshes, and samples under the sieve are sampled for detection and analysis.

The phase analysis of the synthesized powder was carried out using an X-ray diffractometer (XRD, X’Pert Pro MRD, Netherlands) with a Philips diffractometer using Cu Ka. The microstructure of powders and elements analysis were investigated using a scanning electron microscope with EDS detector (SEM, S–3400N, Japan).

This article focuses on the study of two reaction systems, system 1: Al and B$_2$O$_3$, and system 2: Mg, Al, and B$_2$O$_3$. Two experimental atmospheres are used in both systems (Table 1).

In the Al–B$_2$O$_3$ system, the following chemical reactions mainly occur:

$$13\text{Al} + 6\text{B}_2\text{O}_3 \rightarrow \text{AlB}_{12} + 6\text{Al}_2\text{O}_3$$ (1)

In the Mg–Al–B$_2$O$_3$ system, the following chemical reactions mainly occur:

$$3\text{Mg} + \text{B}_2\text{O}_3 \rightarrow 2\text{B} + 3\text{MgO}$$ (2)

$$\text{Al} + 12\text{B} \rightarrow \text{AlB}_{12}$$ (3)

$$18\text{Mg} + \text{Al} + 6\text{B}_2\text{O}_3 \rightarrow \text{AlB}_{12} + 18\text{MgO}$$ (4)

After the combustion synthesis, the extraneous components were leached out from the synthesized powder with 60° C in diluted HCl (pH value is 3).

Results and discussion

Figure 1 is the X-ray diffraction pattern of Al and B$_2$O$_3$ prepared under both air conditions (before and after pickling) and argon conditions (before and after pickling) respectively. It can be seen from the figure that in either air or argon conditions, irremovable Al$_2$O is found in the bottom. Analysis of its crystal
structure revealed that the α-Al_2O_3 is corundum, an extremely stable substance that is difficult to remove through physical and chemical reactions. Therefore, AlB$_{12}$ prepared from Al and B$_2$O$_3$ contains a large amount of inseparable corundum, which contributes to the failure of the self-propagating preparation of AlB$_{12}$ using Al and B$_2$O$_3$ as raw materials.

Figure 2 is the X-ray diffraction pattern of powder prepared with Mg, Al and B$_2$O$_3$ under argon conditions (before pickling). From the results of phase analysis, the main components of the coarse powder before pickling are MgO, MgB$_2$O$_4$, MgAl$_2$O$_4$, and AlB$_{12}$, while in the powder after pickling, when MgO and MgB$_2$O$_4$ are removed, the main impurity is MgAl$_2$O$_4$. This shows that the purity of AlB$_{12}$ is not high when prepared by self-propagating, self-propagation when the raw materials used are Mg, Al and B$_2$O$_3$.

Figure 3 shows the microscopic morphology of powder prepared through use of the self-propagating method under argon conditions with Al and B$_2$O$_3$ as raw materials after pickling. From an analysis of the energy spectrum results, the A particles – with obvious layering phenomenon on the left are Al$_2$O$_3$ particles – while the B particles – with more obvious granular shape on the right – are AlB$_{12}$. This situation shows that despite the pickling treatment, Al$_2$O$_3$ is still untreated. It also shows that the unremovable by-product Al$_2$O$_3$ uses Al and B$_2$O$_3$ as raw materials and is the biggest obstacle to self-propagating preparation of AlB$_{12}$.

Table 2 shows the elemental analysis results of EDS analysis after pickling of Al and B$_2$O$_3$ as raw materials and self-propagating preparation of AlB$_{12}$ with Mg, Al, and B$_2$O$_3$ as raw materials. From the results in the table, the acid wash product prepared with the use of Al and B$_2$O$_3$ as raw materials has the highest content of O element, followed by B and Al. Observing the test samples, there are still insoluble substances, so the test results are also relatively incomplete. This shows that under argon conditions, using Al and B$_2$O$_3$ as raw materials to prepare AlB$_{12}$, and using the self-propagating method, the purity of AlB$_{12}$ in the prepared product is low, and the B content is insufficient.

Summary

The phase analysis results of preparing AlB$_{12}$ using Al and B$_2$O$_3$ as raw materials shows that there are α-Al_2O_3 impurities in the self-propagating powder regardless of either the air condition or the argon condition, and it cannot be removed. Consequently, the purity of the prepared AlB$_{12}$ is not high. The phase analysis results of preparing AlB$_{12}$ using Mg, Al and B$_2$O$_3$ as raw materials indicates that the self-propagating and acid-washed self-propagating powder has unremovable MgAl$_2$O$_4$ impurities under argon conditions, and the purity of the prepared AlB$_{12}$ is not high, causing self-propagation. The fundamental reason for the low purity of AlB$_{12}$ prepared by this method is the existence of impurities that cannot be removed. For future research work, it may be very promising to consume Al$_2$O$_3$ through aluminum electrolysis.

Notes

The authors declare that they have no competing financial interest.
Acknowledgements

This work was supported by the fundamental, scientific-research business resources of the central universities (award # N0060200).

References

Highlights

- Significant publisher of ORCID
- Signatory Publisher of DOAR (San Francisco Declaration on Research Assessment)
- Articles archived in world’s renowned service providers such as Portico, CNKI, AGRIS, T&DNet, Base (Bielefeld University Library), CrossRef, Scilite, J-Gate etc.
- Journal indexed in ICMJE, E-berapa/RMEOE, Google Scholar etc.
- OA/PMH (Open Archives Initiative Protocol for Metadata Harvesting)
- Dedicated editorial board for every journal
- Accurate and rapid peer review process
- Increased citations of published articles through promotions
- Reduced timeline for article publication

Submit your articles and experience a new surge in publication services (https://www.peertechz.com/submission).

Peertechz journals wishes everlasting success in your every endeavours.