Research Article

Effect of deep-litter floor and battery cages system on the feed consumption and egg production rate of commercial Layers

Nura El Dikeir Kogoor¹, Jumma B Jadalla², Mahmoud Fadlelmoula Bakhit³, Idris Adam Idris² and Mohammed Alhadi Ebrahiem¹*
¹Department of Animal Production, Faculty of Agricultural Sciences, Dalanj University, Sudan
²Department of Animal Production, Faculty of Natural Resources and Environmental Studies, University of Kordofan, Sudan
³Ministry of Production and Economic Resources, North Kordofan State, Sudan

Abstract

This study was designed to determine the effects of deep litter floor and battery cages housing system on layer feed consumption and egg production rate. Thirty two commercial hybrid layers (hyline) of 10 months production age were randomly selected and distributed equally in four deep litter ground cages, and thirty (hyline) layers were kept in battery cages, which consisted of triple deck cages, provided with automatic nipple watering system and front trough feeders. During the experimental period there were slight changes in live body weight, it was about -0.01 kg in deep litter and about 0.04 kg in battery cages system. Layers housed in deep litter system significantly consumed more feed compared to that kept in battery cages except at first week, and best averages of feed conversion ratios were calculated for layers housed in deep litter than that kept in battery cages, differences were significant for second, third, fourth and fifth weeks of experimental period. Egg production rate were significantly different in layers housed in deep litter system through the production period except the first weeks.

Introduction

Poultry is an important farm species in almost all countries. It is an important source of animal protein and can be raised in situations with limited feed and housing resources. Chicken egg is one of the finest foods, offering humans an almost complete balance of essential nutrients with proteins, vitamins, minerals and fatty acids of great biological value [1]. In addition of being one of the foods of lowest cost, it increases the consumption of food of high nutritional value for the low-income population [2]. Feed and housing are two main factors of successful poultry farming business. Housing is important for raising layer poultry commercially and in small scale. A good layer poultry housing system keeps the bird safe, well growing, productive and protects the poultry birds from adverse weather conditions, injury and predators [3]. Scientists have made various conflicting reports about the contamination of eggs under different housing systems. The majority of commercial laying hens in the world are housed in cage systems in contrast to non-cage systems such as aviaries, barns or free range [4]. Cage poultry houses are difficult to clean and disinfect [5] and with Salmonella contamination has been shown to be more persistent in successive flocks housed in cages than on-floor due to poor standards of cleaning and disinfection in cage farms [6]. Keeping higher egg production potentials of commercial layers aside management would then be key factor to ensure high profitability [7]. Some important factors from the managerial point of view are appropriate size of operation efficient, utilization of resources, economical feeding, improved housing and appropriate stocking rate. Savory and Pištěková, et
table sustainable

Materials and method

This experiment was conducted in the Poultry Production Research Unit, Department of Animal Production, Faculty of Natural Resources and Environmental Studies, University of Kordofan, Elobeid. The experiment extended from 10 September to 4 November. 2016. Elobeid city (latitudes 13° 14'/ 35.3° N and 13° 05'/43.2° N and longitudes 30°15'/ 12.0 and 30°10'/54.5° E. Elobeid is the capital of North Kordofan State with population that was estimated at 398993 [19]. Sixty two of commercial hybrid layers (High line) were randomly selected from layer flock at production age of ten months. The birds vaccinated against Newcastle and Fowl pox diseases and treated against round and tape worms. The experimental birds were fed commercial layer ration ad Libutum (Table 1). The average daily feed consumption per bird was calculated from the total hen–day feed consumption, and the average egg production per bird was calculated from the total hen–day production.

Experimental layer ration

For the sake of feeding level and quality, gross and chemical composition of the experimental ration is presented in Tables 1.1, 1.2.

Data analysis

The completely randomized experimental design was used for data analysis. Analysis of variance was used for detecting variations among different treatment means. Duncan Multiple Range Test (DMRT) was used to assess the significance among treatment means according to Gomez and Gomez (2000). SAS v0.9 software (Statistical Analysis System) was used to analyze data.

Results

Experimental layers initial live body weight

The initial live body weight of the experimental layers ranged from 1.33 kg to 1.46 kg and 1.4 kg to 1.47kg for the layers housed in deep litter floor and layers kept in battery cages, respectively (Table 2).

Experimental layers final live body weight

Table 3 shows that the final live body weight was ranged from 1.38 kg to 1.42 kg for layers in deep litter floor and 1.36 kg to 1.42 for layers in cages.

Birds feed consumption

Table 4 shows the average weekly feed consumption, layers housed in deep litter system consumed significantly (p≤0.05) greater feed compared to layers kept in battery cages during the whole experimental period except the first week Table 5.

Table 2: Initial live body weight (mean ± sd) Kg of experimental layer.

<table>
<thead>
<tr>
<th>Housing type</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.37±0.07</td>
<td>1.33±0.11</td>
<td>1.46±0.12</td>
<td>1.43±0.12</td>
</tr>
<tr>
<td>B</td>
<td>1.47±0.15</td>
<td>1.45±0.13</td>
<td>1.40±0.09</td>
<td>1.42±0.14</td>
</tr>
</tbody>
</table>

* Where: A= deep-litter housing and B= cages housing.

** Numbers between brackets are number of hens.

Table 3: Final live body weight (mean ±sd) Kg of the experimental layers.

<table>
<thead>
<tr>
<th>Housing type</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.38±0.12</td>
<td>1.41±0.09</td>
<td>1.42±0.17</td>
<td>1.41±0.16</td>
</tr>
<tr>
<td>B</td>
<td>1.42±0.15</td>
<td>1.42±0.12</td>
<td>1.36±0.12</td>
<td>1.38±0.11</td>
</tr>
</tbody>
</table>

* Where: A= deep-litter housing and B= cages housing.

** Numbers between brackets are number of hens.

Egg production and production rate

The total of egg produced by layers kept in deep-litter floor and battery cages were about 1118 and 921, respectively. So the differences in egg production percentage were significant (p≤0.05) through the whole production period except the first and last weeks in deep litter and cages respectively (Table 6).

Discussion

The study showed no significant differences in body weight gain during the experimental period for layers housed in deep litter floor and layers kept in battery cages, the average body weight gain of battery cages layers (0.04) kg was slightly better over the average body weight gain of deep litter layers (~0.01) kg and that could be due extra energy and heat production and moving [20]. The study explained that hen’s in deep litter floor had higher feed consumption rate than that kept in battery cages. The mean values of weekly feed consumption at the end of experiment were 740.6 and 707.6 g for layers housed in deep litter floor and layers kept in battery cages, respectively. Leeson and summers [21] and Harms, et al. [22] noted that there was a significant relationship between feed consumption and body weight and feed consumption and lying rate. As body weight and production rate increased, feed consumption of hens also increased. The best-feed conversion ratio was observed in layers

Table 2: Initial live body weight (mean ± sd) Kg of experimental layer.

<table>
<thead>
<tr>
<th>Housing type</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
<th>W6</th>
<th>W7</th>
<th>W8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>93</td>
<td>101<sup>a</sup></td>
<td>104<sup>a</sup></td>
<td>105<sup>a</sup></td>
<td>95<sup>a</sup></td>
<td>111<sup>a</sup></td>
<td>121<sup>a</sup></td>
<td>116<sup>a</sup></td>
</tr>
<tr>
<td>B</td>
<td>95</td>
<td>94<sup>b</sup></td>
<td>100<sup>b</sup></td>
<td>98<sup>b</sup></td>
<td>89<sup>b</sup></td>
<td>105<sup>b</sup></td>
<td>117<sup>b</sup></td>
<td>113<sup>b</sup></td>
</tr>
</tbody>
</table>

* Where: A= deep-litter housing and B= cages housing.

** W1, W2, W2, W4, W5, W6, W7 and W8 are age of layers after starting the experiment by 1, 2, 3, 4, 5, 6, 7 and 8 weeks, respectively.

*** Numbers with different superscripts in the same column are significantly differ (Duncan multiple range test 5%).

Table 3: Final live body weight (mean ±sd) Kg of the experimental layers.

<table>
<thead>
<tr>
<th>Housing type</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
<th>W6</th>
<th>W7</th>
<th>W8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.92±0.02</td>
<td>1.9±0.09</td>
<td>1.91±0.02</td>
<td>1.83±0.04</td>
<td>1.83±0.04</td>
<td>2.23±0.06</td>
<td>2.05±0.01</td>
<td>2.33±0.04</td>
</tr>
<tr>
<td>B</td>
<td>1.95±0.06</td>
<td>2.15±0.04</td>
<td>2.14±0.02</td>
<td>2.12±0.02</td>
<td>2.19±0.05</td>
<td>2.42±0.03</td>
<td>2.51±0.02</td>
<td>2.28±0.04</td>
</tr>
</tbody>
</table>

* Where: A= deep-litter housing and B= cages housing.

** W1, W2, W2, W4, W5, W6, W7 and W8 are age of layers after starting the experiment by 1, 2, 3, 4, 5, 6, 7 and 8 weeks, respectively.

*** Numbers with different superscripts in the same column are significantly differ (Duncan multiple range test 5%).

**** Numbers between brackets are number of hens.

Table 4: Feed consumption per bird/day (Gram /Day) of experimental layers.

<table>
<thead>
<tr>
<th>Housing type</th>
<th>Age (week)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W1</td>
</tr>
<tr>
<td>A</td>
<td>93</td>
</tr>
<tr>
<td>B</td>
<td>95</td>
</tr>
</tbody>
</table>

Table 5: Feed conversions (Kg/dozen) of experimental layers.

<table>
<thead>
<tr>
<th>Housing type</th>
<th>Age (week)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W1</td>
</tr>
<tr>
<td>A</td>
<td>192±0.02</td>
</tr>
<tr>
<td>B</td>
<td>1.95±0.06</td>
</tr>
</tbody>
</table>

* Where: A= deep-litter housing and B= cages housing.

** W1, W2, W2, W4, W5, W6, W7 and W8 are age of layers after starting the experiment by 1, 2, 3, 4, 5, 6, 7 and 8 weeks, respectively.

*** Numbers with different superscripts in the same column are significantly differ (Duncan multiple range test 5%).

**** Numbers between brackets are number of hens.

Table 6: Weekly production rate (%) of the experimental layers.

<table>
<thead>
<tr>
<th>Housing type</th>
<th>Age (week)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W1</td>
</tr>
<tr>
<td>A</td>
<td>58.04</td>
</tr>
<tr>
<td>B</td>
<td>58.57</td>
</tr>
</tbody>
</table>

* Where: A= deep-litter housing and B= cages housing.

** W1, W2, W2, W4, W5, W6, W7 and W8 are age of layers after starting the experiment by 1, 2, 3, 4, 5, 6, 7 and 8 weeks, respectively.

*** Numbers between brackets are egg production rate (%).

**** Numbers with different superscripts in the same column are significantly differ (Duncan multiple range test 5%).

Citation: Dikeir Kogoor NE, Jadalla JB, Bakhít MF, Idrís IA, Ebrahiem MA (2021) Effect of deep-litter floor and battery cages system on the feed consumption and egg production rate of commercial Layers. Int J Vet Sci Res 7(2): 118-122. DOI: https://dx.doi.org/10.17352/ijvsr.000090
reared in deep-litter and battery cage respectively. Highest best feed conversion was observed in deep-litter, battery cage at week fourth 1.91, and 2.12 kg respectively. Also report noted by Gerzilov, et al. [23] and [5] the feed conversion ratio in layers kept in deep-litter floor and layers kept in battery cages, respectively. Differences in egg production percentage were significant (p ≤0.05) through the whole production period except the first week. However, the literature reveals that egg production from conventional cage layers is higher than in alternative systems such as avairy, floor management or free-range system [24–27]. Other studies conducted in several European countries indicate that egg production in furnished cages is comparable to that in conventional cages [28]; Meanwhile, Pohle and Cheng [29] reported that layers maintained in furnished cages laid more eggs at 40 weeks compared to conventionally caged birds (P≤0.05) because of considerable improvements in welfare levels [30].

Conclusion
This study showed that deep litter system could provide a good managerial system than battery cages system in open-sided houses. And some advantages of deep litter system have been known, including high feed consumption and feed conversion beside a good egg production rate. The results of this study have demonstrated that there exist differences in productive performance and the housing system. Therefore it is important to select an appropriate housing system for a particular strain of layer in order to produces eggs with highest quality.

References

