Evaluation of the cookies formulated with finger millet plant material for antidiabetic property

Amit Semwal1*, Shilpa Sharma1, Sarswati Prakash Bhatt1, Mamta Bisht2, Rohit Kumar Trivedi2 and Vikash Jakhmola1

1Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
2School of Applied and Life Sciences, Uttaranchal University, Dehradun, India

Abstract

Cookies are the most popular bakery food consumed worldwide. The development of reduced-sugar soft cookies by using Finger Millet, Syzygium cumini L. (Jamun) and stevia extract was investigated. In addition to it, Buttermilk powder was used as a bulking agent to improve the flavor, color and texture of the cookies along with other ingredients like flour, margarine, salt, sodium bicarbonate, and water. The creamery method of production was used for cookie preparation. Amounts of water, stevia, and buttermilk powder and baking duration for each formulation were determined by preliminary experiments.

Different formulations use different ratios to find out the best composition for cookies on the basis of palatability. After the selection of the best composition, cookies were prepared for the physiochemical, sensory and nutritional analysis. Sensory analysis was evaluated based on organoleptic properties: color, taste, aroma and overall acceptability on the basis of a 9-point hedonic scale. The physiochemical evaluation included total ash value, total water, and alcoholic extraction, and total moisture content. On the basis of nutritional value comparison, it was found that protein content is higher in our formulation than in other marketed products. Due to the high antioxidant potential and phenolic content of the Finger Millet cookie, it can be used as a therapeutic or functional food source for the treatment of overweight, obesity, and diabetes.

Introduction

This study highlights the use of cookies, which are the most used form of nutraceuticals for pre-diabetic or type-2 diabetic patients [1]. Diabetes mellitus is an alarming situation in the world that should be taken care of on a priority basis. It is a metabolic disorder in which insulin hormone, secreted from an endocrine gland (the pancreas) which assists the uptake of glucose into the tissue and uses it as energy to perform daily life activities; if the insulin hormone gets destroyed or reduced then it causes diabetes [2]. It is concerned with the endocrine glands and their secretions. India is facing severe growth in diabetic patients in both rural and urban areas [3,4]. Recent studies show that diabetes is prevalent among adults, about 20% in urban areas and about 10% in rural populations [5]. Studies showed that 77 million individuals have been battling this chronic disease which is expected to get spike to over 134 million by the year 2045 [2]. Diabetes affects 8.5 percent of persons 18 years of age. Diabetes has been the causative factor of 1.5 million fatalities in 2019, with 48 percent of all diabetes-related deaths occurring before age of 70 [6]. Diabetes caused a 5% spike in untimely mortalities (death before the age of 70) between 2000 and 2016 [7,8]. The diabetes-related proportion of deaths declined in high-income nations from 2000 to 2010 but then climbed from 2010 to 2016. Diabetes-related premature mortality grew in lower-middle-income nations over both eras [9,10].

Nutraceuticals have a prominent role to overcome this
issue. The concept of nutraceutical therapy is taking food as a drug.

Due to a sedentary lifestyle and consumption of unhealthy diet people have become more prone to various diseases [1]. Nutraceuticals are non-specific biological medicines that are used to improve overall health, reduce spikes of glucose levels and manage symptoms. Traditional medicinal herbs are utilized for a variety of diabetic symptoms all around the world. Herbal medications are often prescribed due to their effectiveness, lack of adverse effects, and inexpensive cost.

However, a person’s vulnerability to disease is mostly determined by genetic susceptibility and lifestyle issues. As a result, nutraceutical responses differ between individuals. Nutraceuticals have the power to help people manage their diabetes [11].

Nutraceutical cookies

A healthy mid-morning appetizer can give you the boost you ought to maintain focus till it’s time to leave. A decent snack can also serve as a mental break and a delight for your tastes. Biscuits were once thought to be a sick diet. It has now been one of the most popular fast-food products for everyone [12]. Cookies are a beloved confectionery product with people of all ages, particularly youngsters, and can therefore function as a medium for providing vital nutrients if made broadly accessible. In the baking business, the introduction of fortified flour blends in baked goods including biscuits and cookies is the latest phenomenon [13]. These foodstuffs can be employed in the management of prediabetes or can also be used in massive feeding programs and humanitarian projects after natural catastrophes due to their improved nutritional composition and other comfort aspects such as easier packaging, storage stability, and fully prepared composition. Biscuits are convenient to transport, delicious to eat, cholesterol-free, and low in calories. In terms of price, it is reasonable.

Diabetics and heart patients should avoid junk and greasy foods, but they can be offered healthy snacks that will improve their health and fulfill their cravings at any moment [14]. The quality and nutritional value of biscuits can be improved by substituting refined flour or low-fiber flour with an enriched source of dietary fiber and minerals, sugar or fats can be replaced by various substituted which results in a reduction of glucose level, carbs, and hasn’t any harmful health effects.

In the present paper, a new creative idea for manufacturing anti-diabetic cookies is presented. The ingredients can be multigrain flour like wheat flour, kodo, or madua flour also known as ragi flour, bajra, and jowar. Cereal grains have become a dietary staple all throughout the globe since prehistoric times. Stevia leaf is a sweetening ingredient that comes from plants. It also helps to maintain glycemic control in the body [15]. Functional foods which are beneficial in these cookies can be sesame seeds, chia seeds, flax seeds oil or powder, and black pepper. Carbohydrate consumption goals must be decided on a case-by-case approach with the assistance of your medical physician [15].

Nutraceuticals that can be used in a cookie without altering taste, texture, appearance, and flavor are

Jamun seed powder: Jamun seeds (*Syzygium cumin* belongs to the family Myrtaceae) have a variety of qualities, including antioxidant, anti-diabetic, anti-cancer, cardiovascular protection, and anti-microbial [16]. The most important components in seeds are alkaloids, jamboseine, flavonoids, saponins, and glycose jambolin which prevents starch from being drastically converted into sugar and aids in the alleviation of diabetic symptoms such as continuous thirst and often urination. Jamun seeds include the substances jamboseine and jamboline, which limits the rate of sugar in the blood. Furthermore, Jamun seeds aid in the manufacturing of insulin, which is beneficial to those with diabetes [17]. On the other hand, seeds are high in fiber and can help the digestion process [16,18,19]. Erectile dysfunction and a lack of sexual desire are common among diabetic men. Jamun seeds might naturally improve your libido if consumed on a regular basis. Jamun fruit or seed can be employed in nutraceutical supplement formulations as a substantial source of natural antioxidants as phenolic and flavonoid compounds are present.

Moringa powder: *Moringa oleifera* derives from the word ‘moringa’ and ‘oleum’ meaning ‘twisted pod’ and ‘oil’ respectively. It’s widely utilized as both food and medicinal all throughout the world. Its leaves can be crushed and once they have dried, they can be used as a healing ailment for the treatment of diabetes, cancer, hypertension, malaria, and fever [20,21]. Leaves of moringa are a good source of antioxidants like ascorbic acid, tocopherol, and other nutrients like minerals (potassium, calcium, and vitamins such as vitamin A) which aid in the maintenance of good vision, immunity, fetal growth, and vitamin E is an antioxidant, also vitamin C content of the leaves is seven times that of oranges [22]. Quercetin, an antioxidant that aims to minimize blood pressure, and Chlorogenic acid, another antioxidant that assists to stabilize blood sugar levels, are both found in Moringa leaves. Moringa’s chlorogenic acid may aid in the body’s sugar processing and influence insulin levels. Leaves are very low in calories and can be incorporated into an obese person’s diet. Moringa leaf powder contains several compounds, indicating its value as a nutritional supplement [23,24].

Quinoa seeds: Quinoa’s popularity has exploded in recent decades, owing to a surge in demand for easy-to-grow, rich in fiber and protein, and gluten-free grain alternatives. Most grains lack all of the amino acids required to create protein [25]. Quinoa, on the other hand, is a complete protein since it includes all of the essential amino acids. DPP IV inhibitory activity was discovered in bioactive peptides derived from quinoa protein hydrolysates [25].

Flax seeds oil: Flaxseed oil is extracted from matured flax seeds that have been cold-pressed or solvent extracted by manufacturers. Sustaining healthy blood sugar levels is critical for diabetics, and fibers play an essential role in this. Flax seeds are regarded as a low-glycemic food owing to their high fiber content. This means that eating them will not cause your blood sugar levels to rise significantly but will instead end up causing them to rise gradually, going to promote glycemic control.

Stevia: The candy leaf, *Stevia rebaudiana* belongs to the family Asteraceae, known for its natural sweetness. Eight glycosides make up stevia. These are the sweet components that have been extracted and refined. These glycosides include Rebaudioside A, C, D, E, and F, Stevioside, Stevilibioside, and Dulsoside A. Stevia is utilized as a sugar substitute in a variety of foods and beverages as a natural sweetener have 200 to 300 times the sweetness of table sugar. Many people question if stevia can heal or cure diabetes because of the attention on it for diabetics. Type 2 diabetes and its consequences, such as heart and kidney problems, are linked to being overweight [26].

Stevia’s adaptability is another advantage. It may be used in both hot and cold drinks, and it can also be sprinkled over oatmeal or fruit [27].

Ragi flour: Ragi, also termed finger millet or Eleusine coracana, is a nutrient-dense, adaptable grain that thrives in dry, hot regions and at high elevations. It has been a key source of nutrients for millions around the world for centuries. Diabetologists claim that consuming a diet rich in finger millet lessens blood glucose levels in the serum [28]. Because of the high fiber level in the diet, it has numerous advantages, such as it is gluten-free, having low glycemic properties, high in calcium, and vitamin D, rich in antioxidants having antimicrobial properties and is known to lower the risk of heart disease caused by atherosclerosis.

The substitution of processed carbs, sugary, fuel-dense, and nutrient-low foods for whole grains and conventional healthful diets in India has made a significant contribution to this issue [25].

Insulin plant: Spiral flag or sugar plant, also recognized as Costus igneus Nak and Costus pictus D. Don, is a Costaceae plant that was recently brought from South and Central America to India as it is commonly planted in South India. It’s a two-foot-tall perennial with spirally arranged leaves and lovely blossoms that grows erect and spread out and its fruits are small, green, and unobtrusive, with a diameter of fewer than 0.5 inches. Its anti-diabetic properties make it a popular treatment for diabetes, and it is widely acknowledged that diabetic patients are reported to consume one leaf per day to keep their hyperglycemia low.

Murraya konigii leaves: It is often recognized as curry leaves or meethi neem as a name of folklore in India, is a member of the Rutaceae family, which has over 150 genera and 1600 species which is well recognized for its distinctive fragrance and pharmaceutical potential. Murraya plant is utilized as an antioxidant, oxygen radical’s scavenger, hepatoprotective, antibacterial, antifungal, and hypoglycemic agent. It protects against dental cavities and is an anticancer, anti-inflammatory, antipyretic immunomodulatory, pancreatic lipase inhibitor, kidney protection, anti-obesity, and so on.

Materials and methodology

Collection of sample

Jamun seed powder, ragi flour (also called manual or kodo), moringa leaves powder, flax seeds oil, baking powder, baking soda, almonds, oats flour, Milk, Flavoring agent (vanilla), salt, baking soda, butter, stevia (sweetening agent) were acquired from Prem Nagar, Dehradun local market. The raw materials were kept in a warehouse for use in studies at room temperature.

Processing of samples

Leaves of *Murraya konigii* and the Insulin plant were collected from the local area, washed and cleaned, and dried in shade. Quinoa seeds were roasted in a dry saucepan until it turns brown and cracked then gives a strong nutty aroma than the ground on a high-powered blender. Sieve the millet mixture in a tiny mesh sieve over a plate.

Jamun powder was prepared from the seeds and kept over to dry in a tray at 60–65°C for 48 hours to ensure thorough drying, then milled into a fine powder with a 60 mesh screen size in a cyclone mill and stored.

Cookie preparation

The modified cookies with a particular percentage of Jamun seed powder, moringa leaf powder, curry leaf powder, and quinoa seed powder were made. All of the essentials, such as ragi flour, stevia, almonds, milk, vanilla essence, flaxseed oil, and oats flour have been used.

Measure the appropriate amount, given in Table 1 step by step as shown in Figure 1, Jamun seed powder, moringa leaf powder, and curry leaf powder. Add different quantities of this power to the dry ingredients bowl, wet and dry ingredients were mixed together to end up making a dough. The cookie balls should be rolled out and punched. Place on a baking tray that has been buttered. Preheat the oven and bake for 20 minutes.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Control</th>
<th>Formulation 1</th>
<th>Formulation 2</th>
<th>Formulation 3</th>
<th>Formulation 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ragiflower</td>
<td></td>
<td>8 gm</td>
<td>10 gm</td>
<td>12 gm</td>
<td>17 gm</td>
</tr>
<tr>
<td>Oatmeal flour</td>
<td></td>
<td>8 gm</td>
<td>10 gm</td>
<td>14 gm</td>
<td>15 gm</td>
</tr>
<tr>
<td>Wheat flour</td>
<td>50 gm</td>
<td>5 gm</td>
<td>7 gm</td>
<td>9 gm</td>
<td>10 gm</td>
</tr>
<tr>
<td>Quinoa seed powder</td>
<td></td>
<td>5 gm</td>
<td>7 gm</td>
<td>7 gm</td>
<td>10 gm</td>
</tr>
<tr>
<td>Jamun seed powder</td>
<td></td>
<td>1 gm</td>
<td>2 gm</td>
<td>5 gm</td>
<td></td>
</tr>
<tr>
<td>Moringa powder</td>
<td></td>
<td>1 gm</td>
<td>2 gm</td>
<td>5 gm</td>
<td></td>
</tr>
<tr>
<td>Murraya konigii powder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin leaf powder</td>
<td>1.5 gm</td>
<td>1.5 gm</td>
<td>1.6 gm</td>
<td>1.6 gm</td>
<td>1.8 gm</td>
</tr>
<tr>
<td>Almond powder</td>
<td>3 gm</td>
<td>3.5 gm</td>
<td>3.7 gm</td>
<td>4 gm</td>
<td></td>
</tr>
<tr>
<td>Baking powder</td>
<td>2 gm</td>
<td>2 gm</td>
<td>2 gm</td>
<td>2.5 gm</td>
<td></td>
</tr>
<tr>
<td>Baking soda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flaxseed oil</td>
<td>2 tbsp</td>
<td>2 tbsp</td>
<td>2 tbsp</td>
<td>3 tbsp</td>
<td>3 tbsp</td>
</tr>
<tr>
<td>Vanilla Essence</td>
<td>1-2 drops</td>
<td>1-2 drops</td>
<td>3-4 drops</td>
<td>3-4 drops</td>
<td>4-5 drops</td>
</tr>
<tr>
<td>Milk</td>
<td>10 gm</td>
<td>12 gm</td>
<td>12 gm</td>
<td>15 gm</td>
<td></td>
</tr>
</tbody>
</table>

1. **For the control sample** Set the temperature of the oven to 375° Fahrenheit and assemble all of the materials and supplies which are required, along with a mixer and calculating utensils. Mix together the particular amount of wheat flour, ragi flour, oatmeal powder, quinoa seeds powder, baking soda and powder, almond powder, and vanilla essence in a separate basin until well combined. Make a note of it and come back to it later.

2. Combine the flaxseed oil and stevia powder in a small bowl. Blend it until it is well combined and forms a creamy mixture. In a separate bowl, combine the vanilla essence and the water. Cookie dough should really be rich and creamy when completed.

3. Gradually add the wet mixture to the dry ingredient mixture, about 1/3 at a time until fully incorporated, then the last third. When all of the dry ingredients have been combined with the remaining ingredients in your mixing bowl, knead it slowly with the help of milk. Cookie dough should really be rich and creamy when completed.

4. Allow the dough to rest for a few minutes. After that, using a cookie scoop, remove some cookies from the cookie batter. Re-roll the cookies into balls and shape them and set them on a cookie sheet coated with butter or oil.

5. Set a reminder for 20 minutes and place the baking sheet with the unbaked cookies on a baking pan in the oven at 160°.

6. Remove the cookies from the oven and leave them to set on the baking tray for 5 - 10 mins. Store them in a cold, dry place or in the refrigerator. Now the cookies are ready.

Evaluation of fortified cookies

Analytical Chemistry: The proximal analysis entails determining the total moisture content, total solids, total ash value, fat content, protein concentration, carbohydrate level and volatile matter of samples with normal techniques.

In a moisture analyzer, the sample's moisture content and solid content were determined. The moisture analyzer simply measures a sample, heats it to dry it and then weighs it again after it's getting dry. A standard procedure for assessing moisture is termed a loss on drying. Basically, the working principle is to weigh the sample, then heat it, dry it, then weigh it once again. Also, moisture concentration can be determined using the hot air oven technique at 105 °C for 4 hours.

- The total ash percentage was calculated by using the muffle furnace process up to a fixed weight by burning the material. First, take a clean porcelain crucible and place it in an oven to dry it properly at 105 °C for 20 minutes for avoiding false weighing. Now cool the crucible in a desiccator, then keep it on the weighing balance to weigh the blank crucible. Take 2 g – 6 g of the sample in a crucible and weigh it again. After weighing, the sample is covered with the lid of the crucible. Once the sample is ready for combustion, place the crucible inside a muffle furnace. Set the temperature at 550 °C for 4 hrs. (After finishing the burning make sure to drop the temperature of the furnace below 250 °C). After this pull out the crucible from the furnace (transfer it to the desiccator for cooling if it is hot) and take the final weight of the crucible containing ash and take note of it.

Determination of ash content

\[
\text{Ash content} \% = \frac{W_2 \ (\text{weight of sample}) - W_1 \ (\text{weight of crucible})}{W_3 \ (\text{Weight of the crucible with ash})} \times 100
\]

- The material is separated in a Soxhlet device by using petroleum ether for fat determination. Make a narrow thimble out of square filter paper for analysis, then place it on a machine and tare its weight. Now crush the sample in a mortar and pestle. Fill the thimble
Determination of crude fat:

\[
\frac{W_2 - W_1}{WS} \times 100
\]

Where:
- \(W_2 \) = weight of the flask
- \(W_1 \) = weight of the flask with fat content
- \(WS \) = weight of sample

The nitrogen value was observed using the Kjeldahl method. The Kjeldahl system comprises three steps that must be taken carefully in order:

Digestion method: The sample is initially digested in strong sulfuric acid with a catalyst present to aid in the transition of amine nitrogen to ammonium ions.

Distillation method:

Determination of nitrogen

\[
\frac{V_1 \times n_1 \times F_1 \times MW_n}{W_s \times 10}
\]

Where:
- \(V_1 \) = volume of 0.1N HCL
- \(n_1 \) = Normality of HCL
- \(F_1 \) = Acid factor
- \(MW_n \) = Molecular weight of nitrogen
- \(W_s \) = sample weight

Meanwhile, the protein concentration was calculated by multiplying the nitrogen Figure 2.

- Total alcoholic and water extractive values: For whole alcohol/water extraction valuation, 5 grams of biscuits powder were placed in 250 ml volumetric flasks containing 90% ethyl alcohol and left for 24 hours. After 24 h the distilled samples were taken in china dishes. All alcoholic and water extractive specimens were examined. The mixture was heated to 100°C to evaporate, then chilled and further computations were made. Completed using the method

\[
\frac{W_2 - W_1}{WS} \times 100
\]

Where \(W_2 \) = weight of the flask with the fat content after it has cooled.

Calculation: A sample of 5 gm yields 4x alcohol extract, hence a sample of 100 gm yields \(80 \times 4 \).

Sensory evaluation: A panel of 10 postgraduate students and faculty members assessed the cookies' sensory qualities. The panel members were asked to assist in the measurement of concepts indicating sensory features such as taste, texture, appearance, mouthfeel, taste, and overall acceptability as well as the application of the result. The scoring approach was evaluated on the basis of representative quality indicators. A 5-point scoring system was used. The appropriateness of fortified cookies was standardized for sensory evaluation through initial trials. This was discovered that Jamun seed powder, moringa, insulin plant, and curry leaves were unacceptable in the given recipes when used at over-high concentrations. This was due to the fact that introducing these powders at these levels changed the flavor (bitterness) and appearance (darker). Because the inclusion of 30 percent Jamun seed powder generated positive results in the present research, these powders were used.

Physical examination: Cookies' physical properties, such as weight breadth, thickness, and spreading ratio, were assessed using the methods outlined below:

Weight (W): An electronic weighing balance was used to measure weight.

Diameter (D): For duplicate readings, the diameter of cookies was determined by arranging 6 cookies horizontally and rotating them at a 90-degree angle.

Thickness (T): The thickness of cookies was determined by stacking six cookies on top of each other and recording the equivalent reading.

Spread Ratio (SR): The spread ratio is the ratio of diameter to thickness that was computed using the equation.
SR = (10 x (Diameter/Thickness x CF)

Where CF is the correction factor at steady air pressure.

Results and discussions

Chemical analysis

The nutrient composition of cookies is classified using proximate analysis. Table 1 summarizes the proximate components evaluated in the Jamun seed powder and moringa powder–enhanced cookies. The water content of cookies rises from 3.2 to 5.6 percent as the proportion of powders tends to intensify. Whereas the high protein composition rises from 3.8 to 5.14 percent. The remaining fat and ash percentages range from 20% to 31% and 2.1% to 3.5% respectively.

The high protein content of cookies helps bodybuilding, growth management, electrolyte levels, and robust immunological function, among other things. The cookies are also rich in fiber level, which may aid with digestion (Table 2). Sensory analysis

Table 3 contains information on how different treatments affected the organoleptic assessment of various herbs–enhanced cookies. The texture data shows that there were considerable variations across treatments. Cookies flour fortified with 30 percent herbal powder received a much higher texture score (6.47), however, 40 percent Jamun seed powder received the lowest score (6.36). A considerably higher rating for flavor was obtained in cookies flour fortified with 30 percent powder (6.56), which was comparable to the control (7.18), but the least value was achieved in 40% inclusion (5.93).

There were substantial differences between the treatments when it came to the general acceptability of herbal powder–enhanced cookies. Overall acceptance was significantly greater in cookies flour fortified with 30 percent powder (7.10), which was comparable to the control (7.45). The lowest score was achieved in 40 percent incorporation (6.31). Physical characteristics of cookies.

The physical parameters of the cookies made are shown in Table 4. The breaking toughness of the fortified cookies seemed to rise as the number of herbal powders and multigrain flours were raised. The rise in the degree of herbal powders and multigrain floors affects physical evaluations such as diameter, height, and spread ratio. Control cookies had an average diameter of 3.49, while integrated cookies had an average diameter of 4.69. The mean thickness of the control sample was 1.12, and other augmented–level cookies were 0.91 cm. As when the quantity of fortification rose, the spread ratio of the cookies elevated, ranging from 3.11 to 6.35. As the amount of herbal powder and flour in the cookies increased, the thickness of the cookies decreased, whereas the diameter of the cookies increased, and therefore the spread ratio of the cookies increased. Cookies with a higher spread ratio are thought to be more attractive.

Table 2: Chemical analysis of enriched biscuits with Jamun seed powder, moringa powder, and curry leaves powder.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Moisture content</th>
<th>Ash content</th>
<th>Protein content</th>
<th>Fat content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3.2 ± 0.2</td>
<td>2.1 ± 0.1</td>
<td>3.8 ± 0.5</td>
<td>20 ± 0.3</td>
</tr>
<tr>
<td>Formulation 1</td>
<td>4.9 ± 0.1</td>
<td>2.9 ± 0.5</td>
<td>4.9 ± 0.1</td>
<td>25 ± 0.18</td>
</tr>
<tr>
<td>Formulation 2</td>
<td>5.6 ± 0.19</td>
<td>3.5 ± 0.3</td>
<td>5.14 ± 0.28</td>
<td>31 ± 0.6</td>
</tr>
<tr>
<td>Formulation 3</td>
<td>5.9 ± 0.6</td>
<td>3.9 ± 0.4</td>
<td>5.67 ± 0.12</td>
<td>39 ± 0.7</td>
</tr>
<tr>
<td>Formulation 4</td>
<td>5.4 ± 0.19</td>
<td>3.4 ± 0.3</td>
<td>5.24 ± 0.28</td>
<td>32 ± 0.6</td>
</tr>
</tbody>
</table>

Table 3: Color and look, taste, texture, and general acceptance of herbal powder–enhanced cookies (score out of 10).

<table>
<thead>
<tr>
<th>Samples</th>
<th>Color and appearance</th>
<th>Texture</th>
<th>Taste</th>
<th>Acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>7.91 ± 0.12</td>
<td>7.39 ± 0.6</td>
<td>7.18 ± 0.11</td>
<td>7.45 ± 0.5</td>
</tr>
<tr>
<td>Formulation 1</td>
<td>6.94 ± 0.1</td>
<td>6.46 ± 0.6</td>
<td>5.83 ± 0.5</td>
<td>6.41 ± 0.6</td>
</tr>
<tr>
<td>Formulation 2</td>
<td>7.19 ± 0.5</td>
<td>6.47 ± 0.5</td>
<td>6.56 ± 0.9</td>
<td>7.10 ± 0.12</td>
</tr>
<tr>
<td>Formulation 3</td>
<td>6.90 ± 0.1</td>
<td>6.36 ± 0.6</td>
<td>5.93 ± 0.5</td>
<td>6.31 ± 0.6</td>
</tr>
<tr>
<td>Formulation 4</td>
<td>6.13 ± 0.4</td>
<td>5.98 ± 0.2</td>
<td>5.13 ± 0.4</td>
<td>5.89 ± 0.3</td>
</tr>
</tbody>
</table>

Table 4: Physical characteristics of cookies.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Diameter</th>
<th>Thickness</th>
<th>Spread ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>4.49 ± 0.3</td>
<td>1.12 ± 0.2</td>
<td>3.11 ± 0.2</td>
</tr>
<tr>
<td>Formulation 1</td>
<td>4.21 ± 0.12</td>
<td>0.96 ± 0.1</td>
<td>4.39 ± 0.3</td>
</tr>
<tr>
<td>Formulation 2</td>
<td>4.52 ± 0.5</td>
<td>0.94 ± 0.3</td>
<td>4.80 ± 0.1</td>
</tr>
<tr>
<td>Formulation 3</td>
<td>5.34 ± 0.2</td>
<td>0.84 ± 0.9</td>
<td>6.35 ± 0.2</td>
</tr>
</tbody>
</table>

Conclusion

The finding demonstrates that herbal powders like curry leaves, moringa leaves, insulin plant leaves, and Jamun seed powders with multigrain flours can be used as a partial substitution for refined flour in cookies and stevia can be used as a replacement material for refined sugar in fortified cookies without impacting the physical or sensory character. The results of this study demonstrate that baked goods can benefit from the addition of herbal powders and stevia for diabetics. Herbal powder and multigrain flours are high in fat, crude fiber, minerals, and calories. These provide a high content of accessible carbohydrates and dietary fibers. They often include antioxidants, which aid with blood sugar regulation. When 30 percent Jamun seed powder is incorporated into the cookies, the cookies become more palatable. Color, taste and texture are all deemed to be acceptable sensory qualities; therefore, they can be devoured by anyone, including diabetics. As a result, new formulations might be evaluated with the goal of developing and consuming food with larger concentrations of functional and nutritious nutrients.

Acknowledgement

Author are thankful to Prof. Dharam Buddhi, Vice Chancellor, Uttaranchal University Dehradun, for providing facilities for the research work.

References

1. Derosa G, Limas CP, Macias PC, Estrella A, Maffioli P. Dietary and nutraceutical...

7. Aarohy K. Diabetic supplements to help you manage your blood sugar levels. The Times Of India. Feb 24, 2020; 17:23 IST.

