ISSN: 2455-1759
Archives of Otolaryngology and Rhinology
Review Article       Open Access      Peer-Reviewed

A Concise Review of Irradiation for Temporal Bone Chemodectomas (TBC)

Ferrat Dincoglan, Murat Beyzadeoglu, Omer Sager*, Selcuk Demiral, Bora Uysal, Hakan Gamsiz, Onurhan Colak, Fatih Ozcan and Bahar Dirican

Department of Radiation Oncology; University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
*Corresponding author: Dr. Omer Sager, Department of Radiation Oncology; University of Health Sciences, Tevfik Saglam Cad. 06018, Etlik, Kecioren, Ankara, Turkey, Tel: +90 312 304 4683; Fax: +90 312 304 4680; E-mail: omersager@gmail.com
Received: 06 April, 2020 | Accepted: 20 April, 2020 | Published: 21 April, 2020

Cite this as

Dincoglan F, Beyzadeoglu M, Sager O, Demiral S, Uysal B, et al. (2020) A Concise Review of Irradiation for Temporal Bone Chemodectomas (TBC). Arch Otolaryngol Rhinol 6(2): 016-020. DOI: 10.17352/2455-1759.000115

Chemodectomas of head and neck region are rare, highly vascularized tumors which are categorized with respect to their site of origin and may be observed with periodical imaging or treated using either a single modality or multimodal approach including the primary management strategies of surgery and Radiation Therapy (RT). Temporal Bone Chemodectomas (TBC) include the tympanomastoid chemodectomas with modified Fisch Class A and B, and tympanojugular chemodectomas with modified Fisch Class C and D. An indolent disease course with low growth rate is typical for the majority of these mostly benign tumors, however, abrupt manifestation with severe symptomatology may also occur rarely in affected patients due to the mass effect with or without local invasion of critical neurovascular structures such as the internal carotid artery, jugular bulb, and lower cranial nerves. Affected patients may suffer from a plethora of symptoms such as otalgia, vertigo, pulsatile tinnitus, hearing impairment, headache, dysphagia, and dizziness. While surgery has been the traditional primary mode of treatment for these tumors, RT and more recently radiosurgery have been incorporated in management to achieve optimal therapeutic outcomes. Herein, we provide a concise review of RT for temporal bone chemodectomas.

Introduction

Chemodectomas of head and neck region are rare, highly vascularized tumors which are categorized with respect to their site of origin and may be observed with periodical imaging or treated using either a single modality or multimodal approach with the primary management strategies of surgery and Radiation Therapy (RT) [1-6]. Temporal Bone Chemodectomas (TBC) include the tympanomastoid chemodectomas with modified Fisch Class A and B, and tympanojugular chemodectomas with modified Fisch Class C and D [6,7]. First description of TBC dates back to 1945 [8]. An indolent disease course with low growth rate is typical for the majority of these mostly benign tumors, however, abrupt manifestation with severe symptomatology may also occur rarely in affected patients due to the mass effect with or without local invasion of critical neurovascular structures such as the inner ear, internal carotid artery, jugular bulb, and lower cranial nerves [1,2]. Affected patients may suffer from a plethora of symptoms such as otalgia, vertigo, pulsatile tinnitus, hearing impairment, headache, dysphagia, and dizziness [1,2]. While surgery has been the traditional primary mode of treatment for these tumors, RT and more recently radiosurgery have been incorporated in management to achieve optimal therapeutic outcomes [1-7]. Herein, we provide a concise review of RT for temporal bone chemodectomas.

Irradiation for management of temporal bone chemodectomas

A growing body of literature spanning about three-quartes of a century has focused on different aspects of chemodectomas and their management with surgery, RT, and radiosurgery [1-76]. Over the years, there have been significant improvements in the discipline of radiation oncology incorporating contemporary radiotherapeutic strategies such as Image Guided Radiation Therapy (IGRT), Adaptive Radiation Therapy (ART), Intensity Modulated Radiation Therapy (IMRT), Breathing Adapted Radiation Therapy (BART), and stereotactic irradiation with Stereotactic Radiosurgery (SRS), Hypofractionated Stereotactic Radiation Therapy (HFSRT), and Stereotactic Body Radiation Therapy (SBRT) [1,2,77-83]. Radiosurgery in the forms of SRS and HFSRT has proved to be safe and effective for management of several intracranial and extracranial disorders [1,2,84-102].

While studies conducted in the earlier periods may be subject to considerations about the use of relatively older RT techniques to deliver a wide range of doses for management, current RT practice involves incorporation of modernized treatment equipment and planning systems along with optimization of delivered dose under image guidance for an improved therapeutic ratio for TBC. Prescribed doses for either conventionally fractionated RT or radiosurgery protocols are being substantiated with accumulating evidence. Normal tissue sparing has been improved by use of intensity modulation techniques. In this context, conventionally fractionated RT and radiosurgery as SRS, FSRT, or HFSRT are now considered as a viable part of multimodality TBC management. While management of advanced, incompletely resected, or recurrent lesions with irradiation has been widely accepted as common practice, accumulating evidence in favor of irradiation has been supported by several studies as well as systemic reviews and metaanalyses assessing its utility as the primary mode of management [56,63-65,73-76,103-110].

In the context of irradiation options, radiosurgery offers the advantage of delivering stereotactically focused and high dose radiation to the well defined treatment volume with steeper dose gradients around the target thereby achieving improved normal tissue sparing. Ultimate effect is possibly achieved by complex interactions of endothelial inflammation, vascular endothelial damage around the tumor-supplying vessels and apoptosis [111,112]. Irradiation of small volumes typically without any margins allows for delivery of high doses with radiosurgery. Clearly, this highly sophisticated technology warrants robust immobilization and image guidance for precise radiation delivery. Negligible doses around the target with radiosurgery allows for respecting the tolerance of critical surrounding structures, leading to an improved toxicity profile compared to surgery [103,104]. Additional favorable aspects of radiosurgical management may include shortening of overall treatment time with expedited recovery typically as an outpatient procedure, earlier return to daily life, improved functional preservation and quality of life, and cost-effectiveness [1,103-106].

In a comprehensive review of paraganglioma management using irradiation and surgery, local control rates were found to be 93.7%, 89.1%, and 78.2% with treatment modalities of SRS, external beam RT, and surgery, respectively with statistical significance [65]. Mortality rate was %2 with surgery vs none with SRS [65]. As for morbidity, cranial nerve palsies were increased with surgery but decreased with external beam RT and SRS compared to the preoperative levels [65].

Clearly, comparative assessment of treatment modalities based on retrospective data may be prone to confounding factors such as considerable variations in patient and tumor characteristics among the included studies. Nevertheless, accumulating evidence suggests that RT and particularly radiosurgery is being increasingly considered to have an expanding indication for management of these tumors.

Conclusion and future perspectives

Chemodectomas of the head and neck region require thorough consideration since management with a given modality may be associated with substantial deterioration in quality of life of the affected patients along with morbidity and even mortality due to the intricate anatomy and intimate association of some lesions with vital neurovascular structures. There has been significant progress from the standpoint of both surgery and RT in recent years with particularly radiosurgical management being supported by accumulating data and suggested as a viable alternative or supplementary treatment modality for a considerable group of affected patients. Nevertheless, rather than selecting one modality over another, it is more plausible to individualize management taking into account factors including age, tumor size, location, growth rate, symptomatology, comorbidies, performance status and patient preferences to improve the therapeutic ratio. Particle therapy, staged treatment of selected patients, and incorporation of systemic agents merit further research to improve outcomes of management.

  1. Sager ODincoglan FBeyzadeoglu M (2015) Stereotactic radiosurgery of glomus jugulare tumors: current concepts, recent advances and future perspectives. CNS Oncol 4: 105-114. Link: https://bit.ly/2XLyyeZ
  2. Sager OBeyzadeoglu MDincoglan FGamsiz HDemiral S, et al. (2014) Evaluation of linear accelerator-based stereotactic radiosurgery in the management of glomus jugulare tumors. Tumori 100: 184-188. Link: https://bit.ly/3ewYWzj
  3. Powell SPeters NHarmer C (1992) Chemodectoma of the head and neck: results of treatment in 84 patients. Int J Radiat Oncol Biol Phys 22: 919-924. Link: https://bit.ly/2VkPx68
  4. Moore GRRobbins JPSeale DLFitz-Hugh GSConstable WC (1973) Chemodectomas of the middle ear. A comparison of therapeutic modalities. Arch Otolaryngol 98: 330-335. Link: https://bit.ly/3bnHr25
  5. Spector GJ, Fierstein J, Ogura JH (1976) A comparison of therapeutic modalities of glomus tumors in the temporal bone. Laryngoscope 86: 690-696. Link: https://bit.ly/2XPoba7
  6. Prasad SCMimoune HAD'Orazio FMedina MBacciu A, et al. (2014) The role of wait-and-scan and the efficacy of radiotherapy in the treatment of temporal bone paragangliomas. Otol Neurotol 35: 922-931. Link: https://bit.ly/2VoJ6zc
  7. Sivalingam S, Konishi M, Shin SH, Lope Ahmed RA, Piazza P, et al. (2012) Surgical management of tympanojugular paragangliomas with intradural extension, with a proposed revision of the Fisch classification. Audiol Neurotol 17: 243-255. Link: https://bit.ly/2XMPWzQ
  8. Rosenwasser H (1945) Carotid body tumor of the middle ear and mastoid. Arch Otolaryngol 41: 64-67. Link: https://bit.ly/34MzLnO
  9. Winship TKlopp CTJenkins WH (1948) Giomus-jugularis tumors. Cancer 1: 441-448. Link: https://bit.ly/3aj4bzf
  10. Zettergren LLindstrom J (1951) Glomus tympanicum. Its occurrence in man and its relation to middle ear tumours of carotid body type. Acta Pathol Microbiol Scand 28: 157-164. Link: https://bit.ly/3bnHR8F
  11. Rosenwasser H (1952) Glomus jugularis tumor of the middle ear; carotid body tumor, tympanic body tumor, nonchromaffin paraganglioma. Laryngoscope 62: 623-633. Link: https://bit.ly/2RRkehn
  12. Capps FC (1952) Glomus jugulare tumours of the middle ear. J Laryngol Otol 66: 302-314. Link: https://bit.ly/34N42CO
  13. Williams HLChilds DS Parkhill EMPugh DG (1955) Chemodectomas of the glomus jugulare (nonchromaffin paragangliomas) with especial reference to their response to roentgen therapy. Ann Otol Rhinol Laryngol 64: 546-566. Link: https://bit.ly/3cvX5Zv
  14. Stewart JPOgilvie RFSammon JD (1956) Tumours of the glomus jugulare and paraganglion juxtavagale of the ganglion nodosum. J Laryngol Otol 70: 196-239. Link: https://bit.ly/2wWuZaS
  15. Capps FC (1957) Tumours of the glomus jugulare or tympanic body. J Fac Radiol 8: 312-324. Link: https://bit.ly/2yp0g6K
  16. Rosenwasser H (1958) Metastasis from glomus jugulare tumors; discussion of nomenclature and therapy. AMA Arch Otolaryngol 67: 197-203. Link: https://bit.ly/2yxLydp
  17. Capps FC (1958) Chemodectoma or tumor of the glomus jugulare and tympanic bodies. AMA Arch Otolaryngol 67: 556-559. Link: https://bit.ly/2yp0sTw
  18. Foote EL (1964) Tumors of The Glomus Jugulare. Am J Clin Pathol 41: 72-77.
  19. Hoople GD (1964) LXV Personal Experiences With Glomus Jugulare Tumors. Ann Otol Rhinol Laryngol 73: 778-790. Link: https://bit.ly/2Kj89gC
  20. Vanmiert PJ (1964) The Treatment of Chemodectomas by Radiotherapy. Proc R Soc Med 57: 946-951. Link: https://bit.ly/34R13cQ
  21. Grubb WBLampe I (1965) The role of radiation therapy in the treatment of chemodectomas of the glomus jugulare. Laryngoscope 75: 1861-1871. Link: https://bit.ly/2VlYSuB
  22. Rosenwasser H (1967) Current management glomus jugulare tumors. Ann Otol Rhinol Laryngol 76: 603-610.
  23. Simonton KM (1968) Paraganglioma (chemodectoma) of the middle ear and mastoid. JAMA 206: 1531-1534. Link: https://bit.ly/3cvXLhv
  24. Shapiro SL (1969) Glomus jugulare tumors. Eye Ear Nose Throat Mon 48: 527-531. Link: https://bit.ly/34PwFiJ
  25. Smith PE (1970) Management of chemodectomas (glomus jugulare). Laryngoscope 80: 207-216. Link: https://bit.ly/2Vo4aFT
  26. Maruyama YGold LHKieffer SA (1971) Radioactive cobalt treatment of glomus jugulare tumors. Clinical and angiographic investigation. Acta Radiol Ther Phys Biol 10: 239-247. Link: https://bit.ly/2RQUr8J
  27. Rosenwasser H (1973) Long-term results of therapy of glomus jugulare tumors. Arch Otolaryngol 97: 49-54. Link: https://bit.ly/2yqDT0A
  28. Spector GJMaisel RHOgura JH (1974) Glomus jugulare tumors. II. A clinicopathologic analysis of the effects of radiotherapy. Ann Otol Rhinol Laryngol 83: 26-32. Link: https://bit.ly/34QUp6f
  29. Jackson AW, Koshiba R (1974) Treatment of glomus jugulare tumours by radiotherapy. Proc R Soc Med 67: 267-270. Link: https://bit.ly/3cvQTkf
  30. Bundi RS (1974) Chemodectomas. Clin Radiol 25: 293-302. Link: https://bit.ly/2RRWN7m
  31. Tidwell TJMontague ED (1975) Chemodectomas involving the temporal bone. Radiology 116: 147-149. Link: https://bit.ly/2yrITlK
  32. Arthur K (1977) Radiotheraphy in chemodectoma of the glomus jugulare. Clin Radiol 28: 415-417. Link: https://bit.ly/2Vn6FrT
  33. Gibbin KPHenk JM (1978) Glomus jugulare tumours in South Wales--a twenty-year review. Clin Radiol 29: 607-609. Link: https://bit.ly/3cBgbgL
  34. Cole JM (1979) Panel discussion: glomus jugulare tumors of the temporal bone. Radiation of glomus tumors of the temporal bone. Laryngoscope 89: 1623-1627. Link: https://bit.ly/2Kj9iVs
  35. Kynaston B (1980) Treatment of tumours in the petrous part of the temporal bone. Australas Radiol 24: 246-249. Link: https://bit.ly/2VkqO1V
  36. Kim JAElkon DLim MLConstable WC (1980) Optimum dose of radiotherapy for chemodectomas of the middle ear. Int J Radiat Oncol Biol Phys 6: 815-819. Link: https://bit.ly/2ROcQ63
  37. Dickens WJMillion RRCassisi NJSingleton GT (1982) Chemodectomas arising in temporal bone structures. Laryngoscope 92: 188-191. Link: https://bit.ly/2RRXnlF
  38. Sharma PD, Johnson AP, Whitton AC (1984) Radiotherapy for jugulo-tympanic paragangliomas (glomus jugulare tumours). J Laryngol Otol 98: 621-629. Link: https://bit.ly/3cxX9bj
  39. Cummings BJ, Beale FA, Garrett PG, Harwood AR, Keane TJ, et al. (1984) The treatment of glomus tumors in the temporal bone by megavoltage radiation. Cancer 53: 2635-2640. Link: https://bit.ly/2wXftvq
  40. Zinreich ESLee DJ (1986) Radiotherapy for the treatment of paragangliomas in the temporal bone. Ear Nose Throat J 65: 181-184. Link: https://bit.ly/3anzn0a
  41. Mendenhall WM, Million RR, Parsons JT, Isaacs JH, Cassisi NJ (1986) Chemodectoma of the carotid body and ganglion nodosum treated with radiation therapy. Int J Radiat Oncol Biol Phys 12: 2175-2178. Link: https://bit.ly/3aglwsw
  42. Konefal JB, Pilepich MV, Spector GJ, Perez CA (1987) Radiation therapy in the treatment of chemodectomas. Laryngoscope 97: 1331-1335. Link: https://bit.ly/3cytmzi
  43. Hansen HSThomsen KA (1988) Radiotherapy in glomus tumours (paragangliomas). A 25 year-review. Acta Otolaryngol Suppl 449: 151-154. Link: https://bit.ly/2xLOhQD
  44. Wang MLHussey DHDoornbos JFVigliotti APWen BC (1988) Chemodectoma of the temporal bone: a comparison of surgical and radiotherapeutic results. Int J Radiat Oncol Biol Phys 14: 643-648. Link: https://bit.ly/3eA9Uno
  45. Pryzant RMChou JLEasley JD (1989) Twenty year experience with radiation therapy for temporal bone chemodectomas. Int J Radiat Oncol Biol Phys 17: 1303-1307. Link: https://bit.ly/3cxN6TI
  46. Valdagni R, Amichetti M (1990) Radiation therapy of carotid body tumors. Am J Clin Oncol 13: 45-48. Link: https://bit.ly/2xyTonh
  47. Springate SCWeichselbaum RR (1990) Radiation or surgery for chemodectoma of the temporal bone: a review of local control and complications. Head Neck 12: 303-307. Link: https://bit.ly/2RQo1LO
  48. Boyle JO, Shimm DS, Coulthard SW (1990) Radiation therapy for paragangliomas of the temporal bone. Laryngoscope 100: 896-901. Link: https://bit.ly/2zfgQq0
  49. Skołyszewski JKorzeniowski SPszon J (1991) Results of radiotherapy in chemodectoma of the temporal bone. Acta Oncol 30: 847-849. Link: https://bit.ly/2VFbjRb
  50. Springate SCHaraf DWeichselbaum RR (1991) Temporal bone chemodectomas--comparing surgery and radiation therapy. Oncology (Williston Park) 5:131-137. Link: https://bit.ly/3alUShX
  51. Guedea F, Mendenhall WM, Parsons JT, Million RR (1991) Radiotherapy for chemodectoma of the carotid body and ganglion nodosum. Head Neck 13: 509-513. Link: https://bit.ly/3bmpm4x
  52. Schild SE, Foote RL, Buskirk SJ, Robinow JS, Bock FF, et al. (1992) Results of radiotherapy for chemodectomas. Mayo Clin Proc 67: 537-540. Link: https://bit.ly/2XO3J9q
  53. Verniers DAKeus RBSchouwenburg PFBartelink H (1992) Radiation therapy, an important mode of treatment for head and neck chemodectomas. Eur J Cancer 28A: 1028-1033. Link: https://bit.ly/2KvokYt
  54. Jekunen AKajanti MLehtonen HMäntylä M (1994) The role of radiotherapy in tympanojugular chemodectomas. Acta Oncol 33: 978-979. Link: https://bit.ly/2wWy4rs
  55. de Jong ALCoker NJJenkins HAGoepfert HAlford BR (1995) Radiation therapy in the management of paragangliomas of the temporal bone. Am J Otol 16: 283-289. Link: https://bit.ly/3apUEWW
  56. Hinerman RW, Mendenhall WM, Amdur RJ, Stringer SP, Antonelli PJ, et al. (2001) Definitive radiotherapy in the management of chemodectomas arising in the temporal bone, carotid body, and glomus vagale. Head Neck 23: 363-371. Link: https://bit.ly/2VkyBg0
  57. Elshaikh MAMahmoud-Ahmed ASKinney SEWood BGLee JH, et al. (2002) Recurrent head-and-neck chemodectomas: a comparison of surgical and radiotherapeutic results. Int J Radiat Oncol Biol Phys 52: 953-956. Link: https://bit.ly/2xJH1EH
  58. Feigenberg SJMendenhall WMHinerman RWAmdur RJFriedman WAet al. (2002) Radiosurgery for paraganglioma of the temporal bone. Head Neck 24: 384-389. Link: https://bit.ly/2XQSk8S
  59. Saringer W, Kitz K, Czerny C, Kornfehl J, Gstöttner W, et al. (2002) Paragangliomas of the temporal bone: results of different treatment modalities in 53 patients. Acta Neurochir (Wien) 144: 1255-1264. Link: https://bit.ly/2KkHaRW
  60. Zabel AMilker-Zabel SHuber PSchulz-Ertner DSchlegel W, et al. (2004) Fractionated stereotactic conformal radiotherapy in the management of large chemodectomas of the skull base. Int J Radiat Oncol Biol Phys 58: 1445-1450. Link: https://bit.ly/2zadZOV
  61. Dall'Igna CAntunes MBDall'Igna DP (2005) Radiation therapy for glomus tumors of the temporal bone. Braz J Otorhinolaryngol 71: 752-757. Link: https://bit.ly/2RQU3at
  62. Chino JPSampson JHTucci DLBrizel DMKirkpatrick JP (2009) Paraganglioma of the head and neck: long-term local control with radiotherapy. Am J Clin Oncol 32: 304-307. Link: https://bit.ly/2VFSvB7
  63. Hinerman RWAmdur RJMorris CGKirwan JMendenhall WM (2008) Definitive radiotherapy in the management of paragangliomas arising in the head and neck: a 35-year experience. Head Neck 30: 1431-1438. Link: https://bit.ly/2VGXdi5
  64. van Hulsteijn LTCorssmit EPCoremans IESmit JWJansen JCet al. (2013) Regression and local control rates after radiotherapy for jugulotympanic paragangliomas: systematic review and meta-analysis. Radiother Oncol 106: 161-168. Link: https://bit.ly/2yp4riW
  65. Suárez CRodrigo JPBödeker CCLlorente JLSilver CE, et al. (2013) Jugular and vagal paragangliomas: Systematic study of management with surgery and radiotherapy. Head Neck 35: 1195-1204. Link: https://bit.ly/2yvZKny
  66. Combs SESalehi-Allameh BHabermehl DKessel KAWelzel Tet al. (2014) Clinical response and tumor control based on long-term follow-up and patient-reported outcomes in patients with chemodectomas of the skull base and head and neck region treated with highly conformal radiation therapy. Head Neck 36: 22-27. Link: https://bit.ly/3atj7Li
  67. Dupin CLang PDessard-Diana BSimon JMCuenca X, et al. (2014) Treatment of head and neck paragangliomas with external beam radiation therapy. Int J Radiat Oncol Biol Phys 89: 353-359. Link: https://bit.ly/2Kl55Rg
  68. Gandía-González MLKusak MEMoreno NMSárraga JGRey Get al. (2014) Jugulotympanic paragangliomas treated with Gamma Knife radiosurgery: a single-center review of 58 cases. J Neurosurg 121: 1158-1165. Link: https://bit.ly/34PznEV
  69. Gilbo PMorris CGAmdur RJWerning JWDziegielewski PT, et al. (2014) Radiotherapy for benign head and neck paragangliomas: a 45-year experience. Cancer 120: 3738-3743. Link: https://bit.ly/2XLDpwJ
  70. Scheick SMMorris CGAmdur RJBova FJFriedman WA, et al. (2018) Long-term Outcomes After Radiosurgery for Temporal Bone Paragangliomas. Am J Clin Oncol 41: 223-226. Link: https://bit.ly/3bnLYBD
  71. Marchetti MPinzi VTramacere IBianchi LCGhielmetti F, et al. (2017) Radiosurgery for Paragangliomas of the Head and Neck: Another Step for the Validation of a Treatment Paradigm. World Neurosurg 98: 281-287. Link: https://bit.ly/2VmYpsb
  72. Cao KIFeuvret LHerman PBolle SJouffroy T, et al. (2018) Protontherapy of head and neck paragangliomas: A monocentric study. Cancer Radiother 22: 31-37. Link: https://bit.ly/2Vnz1SM
  73. Suárez CFernández-Alvarez VNeumann HPBoedeker CCOffergeld C, et al. (2015) Modern trends in the management of head and neck paragangliomas. Eur Arch Otorhinolaryngol 272: 3595-3599. Link: https://bit.ly/3cw1HPj
  74. Sahyouni RMahboubi HMoshtaghi OGoshtasbi KSahyouni S, et al. (2018) Radiosurgery of Glomus Tumors of Temporal Bone: a Meta-analysis. Otol Neurotol 39: 488-493. Link: https://bit.ly/2XOuvOZ
  75. Jansen TTGTimmers HJLMMarres HAMKaanders JHAMKunst HPM (2018) Results of a systematic literature review of treatment modalities for jugulotympanic paraganglioma, stratified per Fisch class. Clin Otolaryngol 43: 652-661. Link: https://bit.ly/2yp4ZW2
  76. Jansen TTGKaanders JHAMBeute GNTimmers HJLMMarres HAM, et al. (2018) Surgery, radiotherapy or a combined modality for jugulotympanic paraganglioma of Fisch class C and D. Clin Otolaryngol 43: 1566-1572. Link: https://bit.ly/3ex3wgZ
  77. Sager O, Beyzadeoglu M, Dincoglan F, Oysul K, Kahya YE, et al. (2012) Evaluation of active breathing control-moderate deep inspiration breath-hold in definitive non-small cell lung cancer radiotherapy. Neoplasma 59: 333-340. Link: https://bit.ly/2VFvbni
  78. Uysal B, Beyzadeoğlu M, Sager O, Dinçoğlan F, Demiral S, et al. (2013) Dosimetric evaluation of intensity modulated radiotherapy and 4-field 3-d conformal radiotherapy in prostate cancer treatment. Balkan Med J 30: 54-57. Link: https://bit.ly/2Kl9zai
  79. Dincoglan F, Beyzadeoglu M, Sager O, Oysul K, Kahya YE, et al. (2013) Dosimetric evaluation of critical organs at risk in mastectomized left-sided breast cancer radiotherapy using breath-hold technique. Tumori 99: 76-82. Link: https://bit.ly/2KhbVXE
  80. Sager OBeyzadeoglu MDincoglan FDemiral SUysal B, et al. (2015) Adaptive splenic radiotherapy for symptomatic splenomegaly management in myeloproliferative disorders. Tumori 101: 84-90. Link: https://bit.ly/3aor9oC
  81. Sager O, Dincoglan F, Uysal B, Demiral S, Gamsiz H, et al. (2017) Splenic Irradiation: A Concise Review of the Literature. J App Hem Bl Tran 1: 101. Link: https://bit.ly/3cAi6m3
  82. Sager O, Dincoglan F, Uysal B, Demiral S, Gamsiz H, et al. (2018) Evaluation of adaptive radiotherapy (ART) by use of replanning the tumor bed boost with repeated computed tomography (CT) simulation after whole breast irradiation (WBI) for breast cancer patients having clinically evident seroma. Jpn J Radiol 36: 401-406. Link: https://bit.ly/2RS06eM
  83. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2019) Breathing adapted radiation therapy for leukemia relapse in the breast: A case report. World J Clin Oncol 10: 369-374. Link: https://bit.ly/34Os7t3
  84. Sirin S, Oysul K, Surenkok S, Sager O, Dincoglan F, et al. (2011) Linear accelerator-based stereotactic radiosurgery in recurrent glioblastoma: A single center experience. Vojnosanit Pregl 68: 961-966. Link: https://bit.ly/34O902l
  85. Dincoglan F, Sager O, Gamsiz H, Demiral S, Uysal B, et al. (2012) Management of arteriovenous malformations by stereotactic radiosurgery: A single center experience. UHOD-Uluslararasi Hematoloji-Onkoloji Dergisi 22: 107-112. Link: https://bit.ly/2RSqNQx
  86. Dincoglan F, Sager O, Gamsiz H, Uysal B, Demiral S, et al. (2012) Stereotactic radiosurgery for intracranial tumors: A single center experience. Gulhane Med J 54: 190-198. Link: https://bit.ly/2KkIX9C
  87. Dincoglan F, Beyzadeoglu M, Sager O, Oysul K, Sirin S, et al. (2012) Image-guided positioning in intracranial non-invasive stereotactic radiosurgery for the treatment of brain metastasis. Tumori 98: 630-635. Link: https://bit.ly/3bmrF7H
  88. Surenkok S, Sager O, Dincoglan F, Gamsiz H, Demiral S, et al. (2012) Stereotactic radiosurgery in pituitary adenomas: A single center experience. UHOD-Uluslararasi Hematoloji-Onkoloji Dergisi 22: 255-260. Link: https://bit.ly/3aorJ5M
  89. Sager O, Beyzadeoglu M, Dincoglan F, Demiral S, Uysal B, et al. (2013) Management of vestibular schwannomas with linear accelerator-based stereotactic radiosurgery: A single center experience. Tumori 99: 617-622. Link: https://bit.ly/2KjcQqK
  90. Demiral S, Beyzadeoglu M, Uysal B, Oysul K, Kahya YE, et al. (2013) Evaluation of stereotactic body radiotherapy (SBRT) boost in the management of endometrial cancer. Neoplasma 60: 322-327. Link: https://bit.ly/2ziiIOV
  91. Dincoglan F, Beyzadeoglu M, Sager O, Uysal B, Demiral S, et al. (2013) Evaluation of linear accelerator-based stereotactic radiosurgery in the management of meningiomas: A single center experience. J BUON 18: 717-722. Link: https://bit.ly/2XQ6sPS
  92. Sager O, Beyzadeoglu M, Dincoglan F, Uysal B, Gamsiz H, et al. (2014) Evaluation of linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) for cerebral cavernous malformations: A 15-year single-center experience. Ann Saudi Med 34: 54-58. Link: https://bit.ly/2zfk24Y
  93. Gamsiz H, Beyzadeoglu M, Sager O, Dincoglan F, Demiral S, et al. (2014) Management of pulmonary oligometastases by stereotactic body radiotherapy. Tumori 100: 179-183. Link: https://bit.ly/2KjcXTc
  94. Dincoglan F, Sager O, Gamsiz H, Uysal B, Demiral S, et al. (2014) Management of patients with ≥ 4 brain metastases using stereotactic radiosurgery boost after whole brain irradiation. Tumori 100: 302-306. Link: https://bit.ly/2RS0TMM
  95. Demiral S, Beyzadeoglu M, Sager O, Dincoglan F, Gamsiz H, et al. (2014) Evaluation of linear accelerator (linac)-based stereotactic radiosurgery (srs) for the treatment of craniopharyngiomas. UHOD - Uluslararasi Hematoloji-Onkoloji Dergisi 24: 123-129. Link: https://bit.ly/2VlngMF
  96. Gamsiz H, Beyzadeoglu M, Sager O, Demiral S, Dincoglan F, et al. (2015) Evaluation of stereotactic body radiation therapy in the management of adrenal metastases from non-small cell lung cancer. Tumori 101: 98-103. Link: https://bit.ly/2XW3bya
  97. Dincoglan F, Beyzadeoglu M, Sager O, Demiral S, Gamsiz H, et al. (2015) Management of patients with recurrent glioblastoma using hypofractionated stereotactic radiotherapy. Tumori 101: 179-184. Link: https://bit.ly/2Y0RJlh
  98. Demiral S, Dincoglan F, Sager O, Gamsiz H, Uysal B, et al. (2016) Hypofractionated stereotactic radiotherapy (HFSRT) for who grade I anterior clinoid meningiomas (ACM). Jpn J Radiol 34: 730-737. Link: https://bit.ly/2XOOLQp
  99. Dincoglan F, Sager O, Demiral S, Uysal B, Gamsiz H, et al. (2017) Radiosurgery for recurrent glioblastoma: A review article. Neurol Disord Therap 1: 1-5. Link: https://bit.ly/3cxEAnu
  100. Demiral S, Dincoglan F, Sager O, Uysal B, Gamsiz H, et al. (2018) Contemporary Management of Meningiomas with Radiosurgery. Int J Radiol Imaging Technol 80: 187-190. Link: https://bit.ly/34Topyu
  101. Dincoglan F, Sager O, Demiral S, Gamsiz H, Uysal B, et al. (2019) Fractionated stereotactic radiosurgery for locally recurrent brain metastases after failed stereotactic radiosurgery. Indian J Cancer 56:151-156. Link: https://bit.ly/3bo2Fgn
  102. Dincoglan F, Sager O, Uysal B, Demiral S, Gamsiz H, et al. (2019) Evaluation of hypofractionated stereotactic radiotherapy (HFSRT) to the resection cavity after surgical resection of brain metastases: A single center experience. Indian J Cancer 56:202-206. Link: https://bit.ly/34R5ww8
  103. Lieberson REAdler JRSoltys SGChoi CGibbs ICet al. (2012) Stereotactic radiosurgery as the primary treatment for new and recurrent paragangliomas: is open surgical resection still the treatment of choice? World Neurosurg 77: 745-761. Link: https://bit.ly/3aoGzsK
  104. Guss ZDBatra SLimb CJLi GSughrue ME, et al. (2011) Radiosurgery of glomus jugulare tumors: a meta-analysis. Int J Radiat Oncol Biol Phys 81: e497-502. Link: https://bit.ly/3etJG62
  105. Guss ZDBatra SLi GChang SDParsa AT, et al. (2009) Radiosurgery for glomus jugulare: history and recent progress. Neurosurg Focus 27: E5. Link: https://bit.ly/2XQW5Lw
  106. Shapiro SKellermeyer BRamadan JJones GWiseman Bet al. (2018) Outcomes of Primary Radiosurgery Treatment of Glomus Jugulare Tumors: Systematic Review With Meta-analysis. Otol Neurotol 39: 1079-1087. Link: https://bit.ly/2xz225e
  107. Tran Ba Huy P (2014) Radiotherapy for glomus jugulare paraganglioma. Eur Ann Otorhinolaryngol Head Neck Dis 131: 223-226. Link: https://bit.ly/3bmTJbj
  108. Hafez RFAMorgan MSFahmy OMHassan HT (2018) Long-term effectiveness and safety of stereotactic gamma knife surgery as a primary sole treatment in the management of glomus jagulare tumor. Clin Neurol Neurosurg 168: 34-37. Link: https://bit.ly/2KmFG9u
  109. Tripathi MRekhapalli RBatish AKumar NOinam AS, et al. (2019) Safety and Efficacy of Primary Multisession Dose Fractionated Gamma Knife Radiosurgery for Jugular Paragangliomas. World Neurosurg 131: e136-e148. Link: https://bit.ly/2VGMzIj
  110. Dobberpuhl MRMaxwell SFeddock JSt Clair WBush ML (2016) Treatment Outcomes for Single Modality Management of Glomus Jugulare Tumors With Stereotactic Radiosurgery. Otol Neurotol 37: 1406-1410. Link: https://bit.ly/3coWOaS
  111. Sharp CD, Jawahar A, Warren AC, Elrod JW, Nanda A, et al. (2003) Gamma knife irradiation increases cerebral endothelial expression of intercellular adhesion molecule 1 and E-selectin. Neurosurgery 53: 154-160; Link: https://bit.ly/2VjEhH8
  112. Balagamwala EH, Chao ST, Suh JH (2012) Principles of radiobiology of stereotactic radiosurgery and clinical applications in the central nervous system. Technol Cancer Res Treat 11: 3-13. Link: https://bit.ly/3eDtxuM
© 2020 Dincoglan F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.