ISSN: 2689-7636

Short Communication
Open Access Peer-Reviewed

Higher and applied mathematics, Tashkent Institute of Finance, Uzbekistan

**Cite this as**

**Copyright Licence**

ARK: Abdukomil Risbekovich Khashimov; KDA: Khilola Djumaniyazova Atamuradovna

In recent years, the desire for mathematical justification of natural phenomena is connected with the study of their mathematical models. For example, the compilation of mathematical models of wave propagation with large amplitudes, tsunami propagation in the oceans, nonlinear wave propagation in shallow waters, hydro-magnetic wave propagation in a cold plasma and acoustic waves in anharmonic crystals is connected with linear and nonlinear equations of odd order [1-6]. Therefore, the study of an odd-order equation with different boundary conditions is one of the urgent problems. Since the third-order equation describes the propagation of non-standard waves in various media, it is precisely here that a study is required to study the asymptotic properties of solutions to these equations. One of the methods of such research is the Saint-Venant principle, which occupies a special place in the theory of elasticity [7-12]. To investigate the asymptotic properties of solutions to boundary value problems using the Saint-Venant principle, it is necessary that a solution to this problem be constructed in a bounded domain. Therefore, the problem under consideration in the proposed article is relevant.

The purpose of this article is to study the equations

$Lu\equiv \frac{{\partial}^{3}u}{\partial {x}^{3}}-\frac{{\partial}^{2}u}{\partial {t}^{2}}=0,\text{(1)}$

In area $\Omega =\left\{\left(\u0445,t\right):0<x<1,\text{\hspace{0.17em}}0<t<T\right\}$ . Equation (1) is one of the representatives of the third-order equation with multiple characteristics. It is known that the fundamental solutions of Eq. (1) have the following form [13].

$U\left(x-\xi ;t-\tau \right)={\left|t-\tau \right|}^{1/3}f\left(\frac{x-\xi}{{\left|t-\tau \right|}^{2/3}}\right),\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}x\ne \xi ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}t\ne \tau ;\text{(2)}$

$V\left(x-\xi ;t-\tau \right)={\left|t-\tau \right|}^{1/3}\phi \left(\frac{x-\xi}{{\left|t-\tau \right|}^{2/3}}\right),\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}x<\xi ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}t\ne \tau .\text{(3)}$

Here

$f\left(z\right)=\frac{2}{3}{\left|z\right|}^{1/2}{\displaystyle \underset{z}{\overset{\infty}{\int}}{\eta}^{-3/2}{f}^{\ast}\left(\eta \right)d\eta +{c}^{+}},\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}z>0,$

$f\left(z\right)=\frac{2}{3}{\left|z\right|}^{1/2}{\displaystyle \underset{-\infty}{\overset{z}{\int}}{\eta}^{-3/2}{f}^{\ast}\left(\eta \right)d\eta +{c}^{-}},\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}z<0,$

$\phi \left(z\right)=\frac{2}{3}{\left|z\right|}^{1/2}{\displaystyle \underset{-\infty}{\overset{z}{\int}}{\eta}^{-3/2}{\phi}^{\ast}\left(\eta \right)d\eta +c},\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}z<0,$

${f}^{\ast}\left(z\right)={\displaystyle \underset{0}{\overset{\infty}{\int}}\mathrm{exp}\left(-\frac{{\lambda}^{3/2}}{\sqrt{2}}\right)\mathrm{cos}\left(\frac{{\lambda}^{3/2}}{\sqrt{2}}+\lambda z\right)d\lambda},\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\infty <z<\infty ,$

${\phi}^{\ast}\left(z\right)={\displaystyle \underset{0}{\overset{\infty}{\int}}\mathrm{exp}\left(\lambda z-{\lambda}^{3/2}\right)dz+}{\displaystyle \underset{0}{\overset{\infty}{\int}}\mathrm{exp}\left(-\frac{{\lambda}^{3/2}}{\sqrt{2}}\right)\mathrm{sin}\left(\frac{{\lambda}^{3/2}}{\sqrt{2}}+\lambda z\right)d\lambda},\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}z<0,$

$z=\left(x-\xi \right){\left|t-\tau \right|}^{-2/3}.$

Here ${c}^{+},\text{\hspace{0.17em}}\text{\hspace{0.17em}}{c}^{-}-$ integral constants in the positive and negative parts of the axis respectively.

Functions $f\left(z\right),\phi \left(z\right),{f}^{\ast}\left(z\right),{\phi}^{\ast}\left(z\right)$ is called the Airy functions for which the relation

${f}^{\u2033}\left(z\right)+\frac{2}{3}z{f}^{\ast}\left(z\right)=0,{\phi}^{\u2034}\left(z\right)+\frac{2}{3}z{\phi}^{\ast}\left(z\right)=0,$

$\underset{-\infty}{\overset{\infty}{\int}}{f}^{\ast}\left(z\right)}=\pi ,{\displaystyle \underset{-\infty}{\overset{0}{\int}}{f}^{\ast}\left(z\right)}=\frac{2\pi}{3},{\displaystyle \underset{0}{\overset{\infty}{\int}}{f}^{\ast}\left(z\right)}=\frac{\pi}{3},{\displaystyle \underset{-\infty}{\overset{0}{\int}}{\phi}^{\ast}\left(z\right)}=0.$

In the domain $\Omega $ consider equation (1) with the boundary condition:

$u\left(x,0\right)={\psi}_{1}\left(x\right),u\left(x,1\right)={\psi}_{2}\left(x\right),0\le x\le 1,\text{(4)}$

${\alpha}_{1}\left(t\right)u\left(0,t\right)+{\alpha}_{2}\left(t\right){u}_{xx}\left(0,t\right)={\phi}_{1}\left(t\right),{u}_{x}\left(1,t\right)={\phi}_{2}\left(t\right),0\le t\le T\text{(5)}$

${\beta}_{1}\left(t\right)u\left(1,t\right)+{\beta}_{2}\left(t\right){u}_{x}\left(1,t\right)+{\beta}_{3}\left(t\right){u}_{xx}\left(1,t\right)={\phi}_{3}\left(t\right).0\le t\le T\text{(6)}$

We note that we considered similar problems in [14,15] only for third-order equations of a different form.

**Theorem 1:** Let the following conditions be satisfied

${\alpha}_{2}\ne 0,{\beta}_{3}\ne 0,2{\beta}_{1}{\beta}_{3}-{\beta}_{2}^{2}\ge 0,\frac{{\alpha}_{1}}{{\alpha}_{2}}\le 0$

*Then problem (1),-(4) does not have more than one solution in the class*
$u\in {C}_{x,t}^{3,2}(\Omega )\cap {C}_{x,t}^{2,1}(\overline{\Omega})$

Let problems (1), (4)-(6) have two solutions ${u}_{1}\left(x,t\right),{u}_{2}\left(x,t\right).$ Then assuming $\nu \left(x,t\right)={u}_{1}\left(x,t\right)-{u}_{2}\left(x,t\right)$ we obtain the following homogeneous problem with respect to the function $\nu \left(x,t\right).$

$Lv\equiv \frac{{\partial}^{3}v}{\partial {x}^{3}}-\frac{{\partial}^{2}v}{\partial {t}^{2}}=0,\text{}\left(x,t\right)\in \Omega ,$

$v\left(x,0\right)=0,v\left(x,1\right)=0,$

${\alpha}_{1}\left(t\right)v\left(0,t\right)+{\alpha}_{2}\left(t\right){v}_{xx}\left(0,t\right)=0,{v}_{x}\left(1,t\right)=0,$

${\beta}_{1}\left(t\right)v\left(1,t\right)+{\beta}_{2}\left(t\right){v}_{x}\left(1,t\right)+{\beta}_{3}\left(t\right){v}_{xx}\left(1,t\right)=0.$

Consider the identity

$\underset{0}{\overset{1}{\int}}{\displaystyle \underset{0}{\overset{1}{\int}}L\left(v\right)vdxdt=0}}.$

Integrating by parts, we get

$-{\displaystyle \underset{0}{\overset{1}{\int}}{\displaystyle \underset{0}{\overset{1}{\int}}{v}_{t}^{2}\left(x,t\right)dxdt-{\displaystyle \underset{0}{\overset{1}{\int}}\left(\begin{array}{l}\frac{{\beta}_{1}}{{\beta}_{3}}{v}^{2}\left(1,t\right)+\frac{{\beta}_{2}}{{\beta}_{3}}{v}_{x}\left(1,t\right)v\left(1,t\right)\\ -\frac{{\alpha}_{1}\left(t\right)}{{\alpha}_{2}\left(t\right)}{v}^{2}\left(0,t\right)+\frac{1}{2}{v}_{{}_{x}}^{2}\left(1,t\right)\end{array}\right)}dt=0}}.$

Hence, by virtue of the conditions of the theorem, the quadratic form

$Q\left(t\right)\equiv \frac{{\beta}_{1}}{{\beta}_{3}}{v}^{2}\left(1,t\right)+\frac{{\beta}_{2}}{{\beta}_{3}}{v}_{x}\left(1,t\right)v\left(1,t\right)+\frac{1}{2}{v}_{{}_{x}}^{2}\left(1,t\right)$

will be positive definite, i.e. quadratic form $Q\left(t\right)$ can be written in the following form:

$\frac{{\beta}_{1}}{{\beta}_{3}}{v}^{2}\left(1,t\right)+\frac{{\beta}_{2}}{{\beta}_{3}}{v}_{x}\left(1,t\right)v\left(1,t\right)+\frac{1}{2}{v}_{{}_{x}}^{2}\left(1,t\right)={\lambda}_{1}{v}_{x}^{2}+{\lambda}_{2}{v}^{2},{\lambda}_{1}>0,{\lambda}_{2}>0.$

Here ${\lambda}_{1}$ and ${\lambda}_{2}$ – roots of the characteristic polynomial of a matrix of a quadratic form $Q$ . Then, by virtue of the conditions of the theorem we have $v\left(x,t\right)=0$ in $\Omega $ and due to the continuity of the function $v\left(x,t\right)$ in $\overline{\Omega}$ we get that $v\left(x,t\right)=0$ in $\overline{\Omega}$ .

**Theorem 2:** Let the conditions of Theorem 1 be satisfied and the following conditions

$\begin{array}{l}{\psi}_{1}(x),{\psi}_{2}(x)\in {C}^{1}\left(\left[0,1\right]\right);\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{\phi}_{1}(t)\in {C}^{1}\left(\left[0,T\right]\right);\text{\hspace{0.17em}}\text{\hspace{0.17em}}\\ {\phi}_{2}(t),{\phi}_{3}(t)\in C\left(\left[0,T\right]\right)\end{array}$

*Then problem (1) (4),-(6) has a unique solution in class*
$u\in {C}_{x,t}^{3,2}(\Omega )\cap {C}_{x,t}^{2,1}(\overline{\Omega}).$
.

The proof of Theorem 2, i.e. the existence theorem, the solution of problem (1), (4)-(6) is carried out by Green's function method using the theory of potentials of fundamental solutions of equation (1) and on the basis of the theory of the system of Fredholm integral equations of the second kind.

**Based on the research, the following conclusions can be drawn:**

- In the proposed method for studying boundary value problems, we will apply all possible local boundary value problems for equations (1), since the boundary condition (5), (6) includes all possible boundary conditions;

- Based on the results of this work, one can study the asymptotic properties of solutions to equation (1) in the neighborhood of infinitely distant points of the boundary and irregular points of the boundary;

- Based on the results of this work, it is now possible to construct a solution to boundary value problems in unbounded domains.

Conceptualization, methodology, validation, formal analysis, investigation A.R.K.; validation, formal analysis, K.D.A. All authors have read and agreed to the published version of the manuscript.

- Abdul-Majid Wazwaz. Soliton solutions for the fifth-order KdV equation and the Kawahara equation with time-dependent coefficients. Physica Scripta. 2010; 82:035009; 4. doi: 10.1088/0031-8949/82/03/035009.
- Freire Igor Leite and Julio Cesar Santos Sampaio. Nonlinear self-adjointness of a generalized fifth-order KdV equation. Journal of Physics A: Mathematical and Theoretical. 2012; 45:032001; 7.
- Igor Leite Freire. New classes of nonlinearly self-adjoint evolution equations of third- and fifth-order. Preprint: arXiv: 2012;3955vl.
- Larkin NA. Modified KdV equation with a source term in a bounded domain. Mathematical Methods in the Applied Sciences. 2006; 29:751-765.
- Larkin NA, Luchesi J. General mixed problems for KdV equation on bounded intervals. Electronic Journal of Differential Equations. 2010; 2010:168; 1-17.
- Wengu Chen, Zihua Guo. Global well-posedness and I method for the fifth order Korteveg - de Vries equation. Journal d’analyse mathematique. 2011; 114:121-156.
- Marin Marin. Generalized solutions in the elasticity of micropolar bodies with voids. Revista de la Academia Canaria de Ciencias: Folia Canariensis Academiae Scientiarum, 1996; ISSN 1130-4723: 8; Nº 1:101-106.
- Marin Marin Contributions on uniqueness in thermoelastodynamics on bodies with voids, Ciencias matemáticas, (Havana). 1998; 16(2):101-109.
- Marin M, Oechsner A, Craciun EM. A generalization of the Saint-Venant’s principle for an elastic body with dipolar structure Continuum Mechanics nad Thermodynamics. 2020; 32(1):269-278.
- Оleynik ОА. On the behavior of solutions of linear parabolic systems of differential equations in unbounded domains. Advances in Mathematical Sciences. 1975; 30:2; 219-220.
- Оleynik ОА, Iosifyan GA. A priori estimates for solutions of the first boundary value problem for the system of elasticity equations and their applications. Advances in Mathematical Sciences. 1979; 32: № 5; 193.
- Оleynik ОА, Iosifyan GA. On the Saint-Venant principle in the plane theory of elasticity. Reports of the Academy of Sciences. 1978; V-239:3; 530.
- Cattabriga L. Un problema al per una equazione parabolica di ordine dispari. Annali della Souola Normale Sup. di Pisa a mat. 1959; 13:2; 163-203.
- Khashimov AR. A non-local problem for a non-stationary equation of the third order of a composite type with a general boundary condition. West. Myself. Tech. Un-ta, Ser. Phys.-Math. Sciences. 2020; 1(24): 187-198.
- Khashimov AR, Dana Smetanova. Nonlocal Problem for a Third-Order Equation with Multiple Characteristics with General Boundary Conditions. Axioms. 2021; 10:110. https://doi.org/10.3390/axioms10020110.

Subscribe to our articles alerts and stay tuned.

This work is licensed under a Creative Commons Attribution 4.0 International License.