The dispersionless completely integrable heavenly type Hamiltonian flows and their differential–geometric structure

Abstract

There are reviewed modern investigations devoted to studying nonlinear dispersiveless heavenly type integrable evolutions systems on functional spaces within the modern differential-geometric and algebraic tools. Main accent is done on the loop diffeomorphism group vector fields on the complexified torus and the related Lie-algebraic structures, generating dispersionless heavenly type integrable systems. As examples, we analyzed the Einstein–Weyl metric equation, the modified Einstein–Weyl metric equation, the Dunajski heavenly equation system, the first and second conformal structure generating equations, the inverse first Shabat reduction heavenly equation, the first and modified Plebański heavenly equations, and integrable heavenly type Hamiltonian systems, proved to be deeply connected with differential systems on the complexified torus and the related diffeomorphism group orbits on them.

Introduction

Within modern mathematical physics the investigations of completely integrable dynamical systems of nonlinear field models or solvable nonlinear partial differential equations are an active area [1–4], of research since the discovery of the inverse scattering method and application of differential–geometric, algebro–geometric and spectral methods [3–9], to their studying. Such nonlinear field models are in a sense universal since they show up in many areas of physics such as solid state, nonlinear optics, hydrodynamics, plasma physics and other both theoretical and applied research fields. Simultaneously integrable models are linked to many areas of mathematics and characterized by beautiful structures behind them.

In present review we are mainly interested in analyzing geometrical structures, which characterize classical integrable dispersionless dynamical systems, being important for describing both their exact solutions and related mathematical structures, responsible for their properties and diverse applications. We investigate the Lie algebraic structure and integrability properties of a very interesting class of nonlinear dispersionless dynamical systems of the heavenly type, which were initiated by Plebański [10], and later analyzed in a series of articles [11–21]. The work is organized as follows: In Section I we review or at least introduce some basic notions and mathematical constructions, which lie in a background of the Lie differential-geometric approach to studying integrable Lax–Sato type dispersionless differential equations. In Section II we describe the related Lie–algebraic structures and integrable Hamiltonian systems, generated by orbits of co-adjoint actions of loop groups on their cotangent spaces. The Lax–Sato type integrable multi–dimensional heavenly type systems and related conformal structure generating equations are presented in Section III. As it was appeared, amongst them there are present important equations for modern studies in physics, hydrodynamics and, in particular, in Riemannian geometry, being related with such interesting conformal structures on Riemannian metric spaces as Einstein and Einstein–Weyl metrics equations, the first and second Plebański conformal metric equations, Dunajski metric equations etc. What was observed, some of them were generated by seed elements $l \in \mathfrak{g}^*$, meromorphic at some points of the complex plane \mathbb{C}, whose analysis needed some modification of the theoretical backgrounds. Moreover, the
general differential–geometric structure of seed elements, related with some conformal metric equations, proved to be invariant subject to the spatial dimension of the Riemannian spaces under regard, that made it possible to describe them analytically. We analyzed the Einstein–Weyl metric equation, the modified Einstein–Weyl metric equation, the Dunajski heavenly equation system, the first and second conformal structure generating equations, the inverse first Shabat reduction heavenly equation, the first and modified Plebański heavenly equations, the Husain heavenly equation, the general Monge equation. Short Section IV is devoted to constructing superconformal analogs of the Whitham heavenly equation. The algebraic Lax–Sato type vector field representation of the classical Korteweg–de Vries dynamical system is analyzed in Section V. And the last Section VI is devoted to investigation of geometric structures related an one–dimensional completely integrable Chaplygin hydrodynamic system, which proved to be deeply connected with differential systems on the complexified torus and the related diffeomorphism group orbits on them. This geometric structure made it possible to find an additional relationship between seed differential forms on the torus and describe a new related infinite hierarchy of integrable hydrodynamic systems. These systems, as it was demonstrated in [22], are closely related with a class of completely integrable Monge type equations, whose geometric structure was also recently analyzed in [14], using a different approach, based on the Grassmann manifold embedding properties of general differential systems defined on jet–submanifolds. The latter posses an interesting problem of finding relationships between different geometric approaches to describing completely integrable differential systems.

Vector fields on the complexified torus and the related Lie-algebraic properties

Consider the loop Lie group \(\hat{G} := \text{Diff}(\mathbb{T}^n) \), consisting [23], of the set of smooth mappings \([C^1 \subset \bar{S}^1 \to \hat{G} = \text{Diff}(\mathbb{T}^n)]\), extended, respectively, holomorphically from the circle \(S^1 \subset C^1 \) on the set \(\mathbb{D}_1 \) of the internal points of the circle \(S^1 \), and on the set \(\mathbb{D}_1 \) of the external points \(\lambda \in C \setminus \mathbb{D}_1 \). The corresponding diffeomorphisms Lie algebra splitting \(\hat{G} := \hat{g}_e \oplus \hat{g}_s \), where \(\hat{g}_e := \text{diff}(\mathbb{T}^n)_e \subset \mathfrak{g}(\mathbb{T}^n; T(\mathbb{T}^n)) \) is a Lie subalgebra, consisting of vector fields on the complexified torus \(\mathbb{T}^n \cong \mathbb{T}^n \times \mathbb{C} \), suitably holomorphic on the disc \(\mathbb{D}_1 \), \(\hat{g}_s := \text{diff}(\mathbb{T}^n)_s \subset \mathfrak{g}(\mathbb{T}^n; T(\mathbb{T}^n)) \) is a Lie subalgebra, consisting of vector fields on the complexified torus \(\mathbb{T}^n \cong \mathbb{T}^n \times \mathbb{C} \), suitably holomorphic on the set \(\mathbb{D}_1 \). The adjoint space \(\hat{g}^* := \hat{g}_e \oplus \hat{g}_s \), where the space \(\hat{g}_e \subset \mathfrak{g}(\mathbb{T}^n; T(\mathbb{T}^n)) \) consists, respectively, from the differential forms on the complexified torus \(\mathbb{T}^n \), suitably holomorphic on the set \(C \setminus \mathbb{D}_1 \), and the adjoint space \(\hat{g}_s \subset \mathfrak{g}(\mathbb{T}^n; T(\mathbb{T}^n)) \) consists, respectively, from the differential forms on the complexified torus \(\mathbb{T}^n \), suitably holomorphic on the set \(\mathbb{D}_1 \), so that the space \(\hat{g}_e \) is dual to \(\hat{g}_s \) and \(\hat{g}_s \) is dual to \(\hat{g}_e \) with respect to the following convolution form on the product \(\hat{g}^* \times \hat{g}^* \):

\[
(\hat{f} | \hat{g}) := \text{res}_\lambda \int_\mathbb{D}_1 \lambda \cdot f \cdot \lambda^* \cdot g \, dx
\]

(2.1)

for any vector field \(\hat{f} := \phi(\mathbb{T}^n), \frac{\partial}{\partial x} \in \hat{g}_e \) and differential form \(\hat{g} := \omega(\mathbb{T}^n), \omega \in \hat{g}_s \), depending on the coordinate \(x := (\mathbb{T}^n, \mathbb{T}^n) \), where, by definition, \(\langle \cdot, \cdot \rangle \) is the usual scalar product on the Euclidean space \(\mathbb{R}^{n+1} \) and \(\frac{\partial}{\partial x} := \begin{pmatrix} \frac{\partial}{\partial x_1}, & \frac{\partial}{\partial x_2}, & \ldots, & \frac{\partial}{\partial x_n} \end{pmatrix}^T \) is the usual gradient vector. The Lie algebra \(\hat{g}_s \) allows the direct sum splitting \(\hat{g} = \hat{g}_s \oplus \hat{g}_e \), causing with respect to the convolution (2.1) the direct sum splitting \(\hat{g}^* = \hat{g}_e \oplus \hat{g}_s \). If to define now the set \(\mathfrak{l}(\hat{g}_s) \) of Casimir invariant smooth functionals \(h : \hat{g}^* \to \mathbb{R} \) on the adjoint space \(\hat{g}^* \) via the coadjoint Lie algebra \(\hat{g} \) action

\[
\hat{a} \cdot h|\hat{g} := a_h|\hat{g}_s \frac{\partial}{\partial x} := h(\hat{g})
\]

(2.2)

at a seed element \(\hat{a} \in \hat{g}_e \), by means of the classical Adler–Kostant–Symes scheme \([4,11,24,25]\), one can generate \([17,20,26,27]\), a wide class of multi–dimensional completely integrable dispersionless (heavenly type) commuting to each other Hamiltonian systems

\[
dt \hat{a} := \frac{\partial}{\partial x} h(\hat{a})
\]

(2.3)

for all \(\hat{a} \in \hat{g}_s \), \(\mathfrak{l}(\hat{g}_s) := \mathfrak{v} h(\hat{a}) \oplus \mathfrak{v} h(\hat{a}) \in \hat{g}_e \oplus \hat{g}_s \), on suitable functional manifolds. Moreover, these commuting to each other flows (2.3) can be equivalently represented as a commuting system of Lax–Sato type \([17]\), vector field equations on the functional space \(C^2(\mathbb{T}^n; \mathbb{C}) \), generating an complete set of first integrals for them.

The Lie-algebraic structures and integrable Hamiltonian systems

Consider the loop Lie algebra \(\hat{g} \), determined above. This Lie algebra has elements representable as \(a(\mathbb{T}^n) := a(\mathbb{T}^n), \frac{\partial}{\partial x} := \sum_{j=1}^n a_j(\mathbb{T}^n) \frac{\partial}{\partial x_j} + a_n(\mathbb{T}^n) \frac{\partial}{\partial x_n} \). Some vectors \(a(\mathbb{T}^n) \in \mathbb{R} \times \mathbb{R}^n \), \(\mathbb{R} \)

homologous in \(\lambda \in \mathbb{D}_1 \) vectors \(a(\mathbb{T}^n) \in \mathbb{R} \times \mathbb{R}^n \) for all \(x \in \mathbb{T}^n \), where \(\frac{\partial}{\partial x} := \begin{pmatrix} \frac{\partial}{\partial x_1}, & \frac{\partial}{\partial x_2}, & \ldots, & \frac{\partial}{\partial x_n} \end{pmatrix}^T \) is the generalized Euclidean vector gradient with respect to the variable vector \(x := (\mathbb{T}^n, \mathbb{T}^n) \). As it was mentioned above, the Lie algebra \(\hat{g} \) naturally splits into the direct sum of two subalgebras:

\[
\hat{g} = \hat{g}_e \oplus \hat{g}_s
\]

(3.1)

allowing to introduce on it the classical \(R \)-structure:

\[
[a, b]_R := [R(a), b] + [a, R(b)]
\]

(3.2)

for any \(a, b \in \hat{g} \), where

The space $\tilde{g}^* \simeq \mathfrak{gl}(n,\mathbb{C})^*$, adjoint to the Lie algebra \tilde{g} of vector fields on \mathbb{R}^n_+, is functionally identified with \tilde{g} subject to the metric (2.1). Now for arbitrary $f, g \in D(\tilde{g}^*)$, one can determine two Lie–Poisson type brackets:

$$\{f, g\}_{\mathcal{R}} := (i, [\nabla f, i g]),$$

and

$$\{f, g\}_{\mathcal{R}} := (i, [\nabla f, g])_{\mathcal{R}},$$

where at any seed element $\tilde{I} \in \tilde{g}^*$ the gradient element $\nabla f(\tilde{I})$ and $\nabla g(\tilde{I}) \in \tilde{g}$ are calculated with respect to the metric (2.1).

Now let us assume that a smooth function $\gamma \in \mathbb{I}(\tilde{g}^*)$ is a Casimir invariant, that is

$$\text{ad}^* \nabla_{\gamma}(\tilde{I}) = 0$$

for a chosen seed element $\tilde{I} \in \tilde{g}^*$. As the coadjoint mapping $\text{ad} \nabla f(\tilde{I}) : \tilde{g}^* \to \tilde{g}^*$ for any $f \in D(\tilde{g}^*)$ can be rewritten in the reduced form as

$$\text{ad}^* \nabla f(\tilde{I}) \equiv \left\{ \frac{\partial}{\partial x^j} \nabla f(\tilde{I}) \right\}_{\mathcal{R}} = \sum_{k=1}^n \frac{\partial^2 \nabla f(\tilde{I})}{\partial x^j \partial x^k} \partial_x^k,$$

where, by definition, $\nabla f(\tilde{I}) := \partial f(\tilde{I}) / \partial x^j$. For the Casimir function $\gamma \in \mathbb{I}(\tilde{g}^*)$ the condition (3.7) is then equivalent to the equation

$$\frac{\partial}{\partial x^j} \nabla f(\tilde{I}) + \gamma f(\tilde{I}) \frac{\partial}{\partial x^j} \gamma f(\tilde{I}) - \gamma f(\tilde{I}) \frac{\partial}{\partial x^j} \gamma f(\tilde{I}) = 0,$$

which should be solved analytically. In the case when an element $\tilde{I} \in \tilde{g}^*$ is singular as $|\lambda| \to \infty$, one can consider the general asymptotic expansion

$$\nabla f(\tilde{I}) \ni \gamma f(\tilde{I}) \sim \lambda^p \sum_{j \in \mathbb{Z}_+} \gamma f(\tilde{I})^j \lambda^{-j}$$

for some suitably chosen $p \in \mathbb{Z}_+$, and upon substituting (3.10) into the equation (3.9), one can proceed to solving it recurrently.

Now let $h(y), h(\tilde{I}) \in \mathbb{I}(\tilde{g}^*)$ be such Casimir functions for which the Hamiltonian vector field generators

$$\nabla h_{\gamma}(y) := (\nabla f_{\gamma} + p y) h(y), \quad \nabla h_{\tilde{I}}(\tilde{I}) := (\nabla f_{\tilde{I}} + p \tilde{I}) h(\tilde{I})$$

are, respectively, defined for suitable integers $p y, p \tilde{I} \in \mathbb{Z}_+$. These invariants generate, owing to the Lie–Poisson bracket (3.6), the following commuting flows:

$$\frac{\partial}{\partial t} h(y) = -\frac{\partial}{\partial x_j} \nabla h(\gamma)(y)_{t} - \frac{\partial}{\partial x^j} \nabla h(\gamma)(y)_{t},$$

and

$$\frac{\partial}{\partial t} h(\tilde{I}) = -\frac{\partial}{\partial x_j} \nabla h(\tilde{I})(y)_{t} - \frac{\partial}{\partial x^j} \nabla h(\tilde{I})(y)_{t},$$

where $y, \tilde{I} \in \mathbb{R}$ are the corresponding evolution parameters. Since the invariants $h(y), h(\tilde{I}) \in \mathbb{I}(\tilde{g}^*)$ commute with respect to the Lie–Poisson bracket (3.6), the flows (3.12) and (3.13) also commute, implying that the corresponding Hamiltonian vector field generators

$$A_{\nabla h_{\gamma}(y)} := \{ \nabla h_{\gamma}(y)(0), \nabla h_{\gamma}(y) \}, \quad A_{\nabla h_{\tilde{I}}(\tilde{I})} := \{ \nabla h_{\tilde{I}}(\tilde{I})(0), \nabla h_{\tilde{I}}(\tilde{I}) \}$$

satisfy the Lax compatibility condition

$$\frac{\partial}{\partial \gamma} A_{\nabla h_{\gamma}(y)} = \frac{\partial}{\partial \tilde{I}} A_{\nabla h_{\tilde{I}}(\tilde{I})},$$

for all $y, \tilde{I} \in \mathbb{R}$. On the other hand, the condition (3.15) is equivalent to the compatibility condition of two linear equations

$$\begin{cases}
\frac{\partial}{\partial \gamma} A_{\nabla h_{\gamma}(y)} &= 0, \\
\frac{\partial}{\partial \tilde{I}} A_{\nabla h_{\tilde{I}}(\tilde{I})} &= 0
\end{cases}$$

for a function $\psi \in \mathcal{C}^2(\mathbb{R}^2 \times \mathbb{R}^n_+)$ for all $y, \tilde{I} \in \mathbb{R}$ and any $\lambda \in \mathbb{C}$.

The above can be formulated as the following key result:

Proposition 3.1: Let a seed element be $\tilde{I} \in \tilde{g}^*$ and $h(y), h(\tilde{I}) \in \mathbb{I}(\tilde{g}^*)$ be Casimir functions subject to the metric (1.1) on the loop Lie algebra \tilde{g} and the natural coadjoint action on the loop co-algebra \tilde{g}^*. Then the following dynamical systems

$$\frac{\partial}{\partial \gamma} A_{\nabla h_{\gamma}(y)} = \frac{\partial}{\partial \tilde{I}} A_{\nabla h_{\tilde{I}}(\tilde{I})},$$

are commuting Hamiltonian flows for all $y, \tilde{I} \in \mathbb{R}$. Moreover, the compatibility condition of these flows is equivalent to the vector fields representation (3.16), where $\psi \in \mathcal{C}^2(\mathbb{R}^2 \times \mathbb{R}^n_+)$ and the vector fields $A_{\nabla h_{\gamma}(y)}, A_{\nabla h_{\tilde{I}}(\tilde{I})}$ are given by the expressions (3.14) and (3.11).
scheme [26,27], one can consider a slightly wider class of integrable heavenly equations, realized as compatible Hamiltonian flows on the semidirect product of the holomorphic loop Lie algebra $\hat{\mathfrak{g}}$ of vector fields on the torus \mathbb{T}^n_C and its regular co-adjoint space \mathfrak{g}^*, supplemented with naturally related cocycles.

The Lax–Sato type integrable multi-dimensional heavenly systems and related conformal structure generating equations

Einstein–Weyl metric equation:

Define $\mathfrak{g}^* = \text{diff}(\mathbb{T}^n_C)$ and take the seed element

$$\tilde{l} = (u_x - 2u_x^2 - u_y)x + y)dx + \{\tilde{\lambda}^2 - v_x + \lambda + v_y + v_y^2\}d\lambda,$$

which generates with respect to the metric (2.1) the gradient of the Casimir invariants $\mathfrak{h}(p_x, h(p_y)) \in \mathfrak{g}^*$ in the form

$$\mathfrak{v}(p_x)(l) \sim \tilde{\lambda}(0,1)^T + (u_x - v_y + v_y^2)^T + O(\lambda^{-1}),$$

$$\mathfrak{v}(p_y)(l) \sim \tilde{\lambda}(0,1)^T + (u_x - v_y + v_y^2)^T + (u_y - v_y)^T \tilde{\lambda}^{-1} + O(\lambda^{-2}).$$

(4.1)

and as $|\lambda| \to \infty$ at $p_1 = 2, p_y = 1$. For the gradients of the Casimir functions $\mathfrak{h}(p_x, h(p_y)) \in \mathfrak{g}^*$, determined by (3.11) one can easily obtain the corresponding Hamiltonian vector field generators

$$A_{\mathfrak{v}(p_x)} = \left(\mathfrak{v}(p_x)(l), \frac{\partial}{\partial \lambda}\right) = (\tilde{\lambda} + u_x + v_y, \frac{\partial}{\partial \lambda}),$$

$$A_{\mathfrak{v}(p_y)} = \left(\mathfrak{v}(p_y)(l), \frac{\partial}{\partial \lambda}\right) = (v + u_x - v_y^2, \frac{\partial}{\partial \lambda}),$$

(4.2)

satisfying the compatibility condition (3.15), which is equivalent to the set of equations

$$u_{xt} + u_{yy} + (wu_x)_x + v_xu_{xy} - v_yu_{xx} = 0,$$

$$v_{xt} + u_{yy} + u_{xx} + v_yu_{xy} - v_yu_{xx} = 0,$$

(4.3)

describing general integrable Einstein–Weyl metric equations [16].

As is well known [19], the invariant reduction of (4.3) at $\nu = 0$ gives rise to the famous dispersionless Kadomtsev–Petviashvili equation

$$(u_x + u_{xx})_x + u_{yy} = 0,$$

(4.4)

for which the reduced vector field representation (4.16) follows from (4.2) and is given by the vector fields

$$A_{\mathfrak{v}(p_x)} = (\tilde{\lambda} + u_x + v_y, \frac{\partial}{\partial \lambda}),$$

$$A_{\mathfrak{v}(p_y)} = (\tilde{\lambda} + u_x + v_y, \frac{\partial}{\partial \lambda}),$$

(4.5)

satisfying the compatibility condition (3.15), equivalent to the equation (4.4). In particular, one derives from (3.16) and (4.5) the vector field compatibility relationships

$$\frac{\partial^2 \rho}{\partial \nu^2} (\lambda + u_x + v_y, \frac{\partial}{\partial \lambda}),$$

$$\frac{\partial^2 \rho}{\partial \nu^2} (\lambda + u_x + v_y, \frac{\partial}{\partial \lambda}),$$

(4.6)

satisfied for $\nu \in \mathbb{C}^2(\mathbb{R}^2 \times \mathbb{T}^n_C, \mathbb{C})$ and any $y, t \in \mathbb{R}, (\lambda, x) \in \mathbb{T}^n_C$.

The modified Einstein–Weyl metric equation: This equation system is

$$u_{xt} = u_{yy} + u_x u_y + u_{xy} w_x + u_{yy} w_x + u_{xx} \alpha,$$

$$w_{xt} = u_{yy} w_x + u_x w_{xy} + u_{xx} w_{yy} + \alpha w_{xx} - \alpha y,$$

(4.7)

where $\alpha_x := u_x w_x - u_{xy}$, and was recently derived in [28]. In this case we take also $\mathfrak{g}^* = \text{diff}(\mathbb{T}^n_C)$, yet for a seed element $\tilde{l} \in \mathfrak{g}^*$ we choose the form

$$\tilde{l} = (u_x^2 + (u_x + u_y + u_{xy}) + u_{xx}) \lambda x + u_{xy} w_x + u_{yy} w_x + \alpha w_{xx} - \alpha y,$$

(4.8)

and as $|\lambda| \to \infty$ at $p_1 = 2, p_y = 1$. For the gradients of the Casimir functions $\mathfrak{h}(p_x, h(p_y)) \in \mathfrak{g}^*$, determined by (3.11) one can easily obtain the corresponding Hamiltonian vector field generators

$$A_{\mathfrak{v}(p_x)} = \left(\mathfrak{v}(p_x)(l), \frac{\partial}{\partial \lambda}\right) = (\tilde{\lambda} + u_x + v_y, \frac{\partial}{\partial \lambda}),$$

$$A_{\mathfrak{v}(p_y)} = \left(\mathfrak{v}(p_y)(l), \frac{\partial}{\partial \lambda}\right) = (v + u_x - v_y^2, \frac{\partial}{\partial \lambda}),$$

(4.9)

Now one easily obtains from (4.10) the compatible Lax system of linear equations

$$\frac{\partial^2 \rho}{\partial \nu^2} (\lambda + u_x + v_y, \frac{\partial}{\partial \lambda}),$$

$$\frac{\partial^2 \rho}{\partial \nu^2} (\lambda + u_x + v_y, \frac{\partial}{\partial \lambda}),$$

(4.11)

satisfied for $\nu \in \mathbb{C}^2(\mathbb{R}^2 \times \mathbb{T}^n_C, \mathbb{C})$ and any $y, t \in \mathbb{R}, (\lambda, x) \in \mathbb{T}^n_C$.

The Dunajski heavenly equation system: This equation, suggested in [15], generalizes the corresponding anti-self-dual vacuum Einstein equation, which is related to the Plebański metric and the celebrated Plebański [10,29], second heavenly equation. To study the integrability of the Dunajski equations

$$u_{xt} = u_{yy} + u_x u_y + u_{xy} w_x + u_{yy} w_x + u_{xx} \alpha,$$

(4.12)
\[v_{xt} + v_{x}v_{y} + u_{x}v_{x} + v_{x}v_{x}x - 2u_{x}v_{x}v_{x}x = 0, \]

where \((u, v) \in C^2(\mathbb{R}^2 \times T^2, \mathbb{R}^2)\), \((y, t; x_1, x_2) \in \mathbb{R}^2 \times \mathbb{T}^2\), we define \(g^* = \text{diff}((\mathbb{T}^2)^{1, 0})^*\) and take the following as a seed element \(\tilde{I} \in \mathbb{G}^*\)
\[
\tilde{I} = \left(\lambda + v_{x} - u_{x}v_{x}, \lambda + v_{x} - u_{x}v_{x}, \lambda + v_{x} - u_{x}v_{x}\right) \in \mathbb{G}^*.
\]

(4.13)

With respect to the metric (2.1), the gradients of two functionally independent Casimir invariants \(h_{(p)}(y), h_{(q)}(y) \in I(\mathbb{G}^*)\) can be obtained as \(|\lambda| \to \infty\) in the asymptotic form as
\[
\nabla h_{(p)}(y)(l) \sim \frac{\lambda}{1 + \lambda} + (\lambda v_{x}u_{x}x - v_{x}v_{x}x + v_{x}v_{x}x - 2u_{x}v_{x}v_{x}x)^{1/2},
\]

(4.15)

following from the Casimir functions gradients (4.14), one easily obtains the following vector fields
\[
A_{\nabla h_{(p)}(y)}(\lambda) = \left(\lambda - u_{x}v_{x}, \lambda - u_{x}v_{x}, \lambda - u_{x}v_{x}\right),
\]

(4.16)

satisfying the Lax compatibility condition (3.15), which is equivalent to the vector field compatibility relationships
\[
\frac{\partial \psi}{\partial x} = u_{x}v_{x}x - u_{x}v_{x}x - \frac{\partial \psi}{\partial x} + v_{x}v_{x}x - \frac{\partial \psi}{\partial x} = 0,
\]

(4.17)

satisfied for \(\psi \in C^2(\mathbb{R}^2 \times T^2, \mathbb{C})\), any \((y, t) \in \mathbb{R}^2\) and all \((\lambda; x_1, x_2) \in T^2\). As was mentioned in \([12]\), the Dunajski equations (4.12) generalize both the dispersionless Kadomtsev–Petviashvili and Plebanski second heavenly equations, and is also a Lax integrable Hamiltonian system.

First conformal structure generating equation:
\[u_{xt} + u_{xy}u_{y} - u_{yx}u_{x} = 0. \]

The seed element \(\tilde{I} \in \mathbb{G}^* = \text{diff}((\mathbb{T}^2)^{1, 0})^*\) in the form
\[
\tilde{I} = \left[u_{x}^{2} - (1 - \lambda)x - u_{y}^{2} + (\lambda - 1)x\right] dx,
\]

(4.18)

\[v_{x}v_{y}(1)(l) \sim u_{y}y + O(\mu^{2}), \]

as \(|\mu| \to 0\), \(\mu = \lambda - 1\), and
\[v_{y}v_{x}(2)(l) \sim u_{x}x + O(\mu^{2}), \]

(4.19)

as \(|\lambda| \to 0\). The commutativity condition
\[[x(y), x(t) = 0 \quad (4.19) \]

of the vector fields
\[x(y) = \partial / \partial y + \nabla h_{(1)}(y), x(t) = \partial / \partial t + \nabla h_{(1)}(t), \]

(4.20)

where
\[\nabla h_{(1)}(y)(l) = -u_{y}y / (\lambda - 1)x, \]

(4.21)

leads to the heavenly type equation
\[u_{yt} + u_{xy}u_{y} - u_{yx}u_{x} = 0. \]

Its Lax–Sato representation is the compatibility condition for the first order partial differential equations
\[\frac{\partial \psi}{\partial y} - \frac{\partial \psi}{\partial x} = 0, \]

(4.22)

where \(\psi \in C^{2}(\mathbb{R}^2 \times T^2, \mathbb{C})\).

Second conformal structure generating equation:
\[u_{xt} + u_{xy}u_{y} - u_{yx}u_{x} = 0. \]

For a seed element \(\tilde{I} \in \mathbb{G}^* = \text{diff}((\mathbb{T}^2)^{1, 0})^*\) in the form
\[\tilde{I} = \left[u_{x}^{2} + u_{y}^{2}(u_{y} + \alpha) - \lambda - u_{x}^{2}(3u_{y}^{2} + 4u_{y}y + \beta) - \lambda \right] dx, \]

(4.23)

where \(u \in C^{2}(\mathbb{R} \times T^2, \mathbb{C})\), \(x \in T^1\), \(\lambda \in C \setminus \{0\}\), and \(\alpha, \beta \in \mathbb{R}\), there is one independent Casimir functional \(C_{l}^{(1)} \in (\mathbb{G}^*)^2\) with the following asymptotic as \(|\lambda| \to 0\) expansion of its functional gradient:
\[v_{x}v_{y}(1)(l) \sim c_{0}u_{x} + (\epsilon_{0}u_{y} + c_{1})u_{x} - \epsilon_{1}u_{y} + c_{2}), \]

(4.24)

where \(c_{0,1,2} \in \mathbb{R}\). If one assumes that \(c_{0} = 1, c_{1} = 0, c_{2} = 0\), then we obtain two functionally independent elements
\[\nabla h_{(1)}(y)(l) = -u_{y}y / (\lambda - 1)x, \]

(4.25)

The corresponding commutativity condition (4.19) of the vector fields (4.20) give rise to the following heavenly type equation:
\[u_{xt} + u_{xy}u_{y} - u_{yx}u_{x} = 0, \]

(4.25)
whose linearized Lax–Sato representation is given by the first order system
\[
\frac{\partial \psi}{\partial y} - \frac{1}{\lambda \partial x} \frac{\partial \psi}{\partial x} = 0,
\]
\[
\frac{\partial \psi}{\partial t} - \left(\frac{1}{\lambda \partial x} - \frac{u_y}{\partial u_x} \right) \frac{\partial \psi}{\partial x} = 0
\]
(4.26)
of linear vector field equations on a function \(\psi \in C^2(\mathbb{R}^2 \times T^2; \mathbb{R}) \).

Inverse first Shabat reduction heavenly equation: A seed element \(\tilde{l} \in \mathbb{G}^* = \text{diff}(T^2) \) in the form
\[
\tilde{l} = (a_0 u_y^2 u_x^2 (\lambda + 1) + a_1 u_x^2 + a_2) dx,
\]
(4.27)
where \(u \in C^2(\mathbb{T}^1 \times \mathbb{R}^2; \mathbb{R}) \), \(\chi \in \mathbb{T}^1 \), \(\lambda \in \mathbb{C} \setminus \{ -1 \} \), and \(a_0, a_1 \in \mathbb{R} \), generates two independent Casimir functionals \(\gamma (1) \) and \(\gamma (2) \in \mathbb{I}(\mathbb{G}^*) \), whose gradients have the following asymptotic expansions:
\[
\nabla \gamma (1) \sim u_y u_x^2 - u_y u_x^4 \mu + \mathcal{O}(\mu^2),
\]
(4.28)
as \(| \mu | \to 0 \), \(\mu : = \lambda + 1 \), and
\[
\nabla \gamma (2) \sim -u_x^4 + O(\lambda^{-2}),
\]
(4.29)
as \(| \lambda | \to \infty \). If we put, by definition,
\[
\nabla \gamma (1)(i) := \left(\frac{\partial}{\partial x} \nabla \gamma (1) \right)(i) \bigg|_{x = \frac{\lambda + 1}{u_x} \partial x},
\]
\[
\nabla \gamma (2)(i) := \left(\frac{\partial}{\partial x} \nabla \gamma (2) \right)(i) \bigg|_{x = \frac{\lambda + 1}{u_x} \partial x},
\]
(4.30)
the commutativity condition (4.19) of the vector fields (4.20) leads to the heavenly equation
\[
u_{xy} + u_y u_{tx} - u_y u_{ty} = 0,
\]
(4.31)
which can be obtained as a result of the simultaneous changing of independent variables \(x \to t, \ y \to x \in \mathbb{R} \) and \(x \to y \in \mathbb{R} \) in the first Shabat reduction heavenly equation. The corresponding Lax–Sato representation is given by the compatibility condition for the first order vector field equations
\[
\frac{\partial \psi}{\partial y} - \frac{\lambda + 1}{\partial x} \frac{\partial \psi}{\partial x} = 0,
\]
\[
\frac{\partial \psi}{\partial t} + \frac{\lambda}{\partial x} \frac{\partial \psi}{\partial x} = 0
\]
(4.32)
where \(\psi \in C^2(\mathbb{R}^2 \times T^2; \mathbb{R}) \).

First Plebański heavenly equation and its generalizations: The seed element \(\tilde{l} \in \mathbb{G}^* = \text{diff}(T^2) \) in the form
\[
\tilde{l} = \lambda^{-1}(u_{y} u_{x_1}^2 + u_{y} u_{x_2}^2) = \lambda^{-1} du_y,
\]
(4.33)
where \(u \in C^2(\mathbb{T}^1 \times \mathbb{R}^2; \mathbb{R}) \), \(x = (x_1, x_2) \in \mathbb{T}^2 \), \(\lambda \in \mathbb{C} \setminus \{ 0 \} \) and \("d" \) designates a full differential, generates two independent Casimir functionals \(\gamma (1) \) and \(\gamma (2) \in \mathbb{I}(\mathbb{G}^*) \), whose gradients have the following asymptotic expansions:
\[
\nabla \gamma (1)(i) \sim (-u_y u_{x_2} u_{y x_1})^\top + \mathcal{O}(\lambda),
\]
\[
\nabla \gamma (2)(i) \sim (-u_{x_2} u_{y x_1})^\top + \mathcal{O}(\lambda),
\]
(4.34)
as \(i, l \to 0 \). The commutativity condition (4.19) vector fields (4.20), where
\[
\nabla \gamma (1)(i) := (\lambda^{-1} \nabla \gamma (1)(i)) \bigg|_{x = \frac{\lambda + 1}{u_x} \partial x},
\]
\[
\nabla \gamma (2)(i) := (\lambda^{-1} \nabla \gamma (2)(i)) \bigg|_{x = \frac{\lambda + 1}{u_x} \partial x},
\]
(4.35)
leads to the first Plebański heavenly equation [13]:
\[
u_{y x_1} u_{x_2} - u_{y x_2} u_{x_1} = 1.
\]
(4.36)
Its Lax–Sato representation entails the compatibility condition for the first order partial differential equations
\[
\frac{\partial \psi}{\partial y} - \frac{u_{y x_2}}{\lambda \partial x_1} \frac{\partial \psi}{\partial x_1} + \frac{u_{y x_1}}{\lambda \partial x_2} = 0,
\]
\[
\frac{\partial \psi}{\partial t} + \frac{\lambda}{\partial x_1} \frac{\partial \psi}{\partial x_1} + \frac{\lambda}{\partial x_2} \frac{\partial \psi}{\partial x_2} = 0
\]
(4.37)
where \(\psi \in C^2(\mathbb{R}^2 \times T^2; \mathbb{C}) \).

Taking into account that the determining condition for Casimir invariants is symmetric and equivalent to the system of nonhomogeneous linear first order partial differential equations for the covector function \(l = (l_1, l_2)^\top \), the corresponding seed element can be also chosen in another forms. Moreover, the form (4.33) is invariant subject to the spatial dimension of the underlying torus \(T^n \), what makes it possible to describe the related generalized conformal metric equations for arbitrary dimension.

In particular, one easily observes that the asymptotic expansions (4.34) are also true for such invariant seed elements as
\[
\tilde{l} = \lambda^{-1}(du_y + du_t).
\]

The described above Lie–algebraic scheme can be easily generalized for any dimension \(n = 2k \), where \(k \in \mathbb{N} \), and \(n > 2 \).

In this case one has \(2k \) independent Casimir functionals \(\gamma (j) \in \mathbb{I}(\mathbb{G}^*) \), where \(\mathbb{G}^* = \text{diff}(\mathbb{R}^k)^* \), \(j = 1, 2, \ldots, 2k \), with the following asymptotic expansions for their gradients:
\[
\nabla \gamma (1)(i) \sim (-u_y u_{x_2} u_{y x_1} u_{y x_2}^2 o_{x_3} o_{x_4} o_{x_5} o_{x_6} o_{x_7})^\top + \mathcal{O}(\lambda),
\]
\[
\nabla \gamma (2)(i) \sim (-u_{x_2} u_{y x_1} o_{x_3} o_{x_4} o_{x_5} o_{x_6} o_{x_7})^\top + \mathcal{O}(\lambda),
\]
\[
\nabla \gamma (3)(i) \sim (o_{x_3} o_{x_4} o_{x_5} o_{x_6} o_{x_7})^\top + \mathcal{O}(\lambda),
\]
\[
\nabla \gamma (4)(i) \sim (o_{x_3} o_{x_4} o_{x_5} o_{x_6} o_{x_7})^\top + \mathcal{O}(\lambda),
\]
(4.38)
where \(o_{x_3} \) and \(o_{x_4} \) designates a full differential.
\[v_j^{(2k-1)}(l) \sim \frac{(a_1, \ldots, a_n, -u x_{2k} u y_{2k} - l)}{2k-2} + O(l), \]
\[v_j^{(2k)}(l) \sim \frac{(a_1, \ldots, a_n, -u x_{2k} u y_{2k} - l)}{2k-2} + O(l). \]

If we put
\[\nabla_I(y)(l) := (\lambda^{-1} v_I^{(1)}(l)) + v_I^{(2k-1)}(l) \]
\[= \frac{k}{m=1} \left(\frac{u x_{2m}}{\lambda} \right) \frac{\partial}{\partial x_{2m}} + \frac{u y_{2m-1}}{\lambda} \frac{\partial}{\partial x_{2m}}, \]
\[\nabla_0(y)(l) := (\lambda^{-1} v_0^{(2)}(l)) + v_0^{(2k)}(l) \]
\[= \frac{k}{m=1} \left(\frac{u x_{2m}}{\lambda} \right) \frac{\partial}{\partial x_{2m}} + \frac{u y_{2m-1}}{\lambda} \frac{\partial}{\partial x_{2m}}, \]
the commutativity condition (4.19) of the vector fields (4.20) leads to the following multi-dimensional analogs of the first Plebański heavenly equation:
\[k \sum_{m=1} \left(u x_{2m} - u y_{2m} u x_{2m} - 1 \right) = 1. \]

Modified Plebański heavenly equation and its generalizations: For the seed element \(I \in \mathbb{g}^* = \text{diff}(\mathbb{R}^2) \) in the form
\[I = (\lambda^{-1} u x_1 y + u x_1 x_1 - u x_2 x_2 + \lambda)dx_1 + \]
\[+ (\lambda^{-1} u x_2 y + u x_2 x_2 - u x_2 x_2 + \lambda)dy_2 = \]
\[= \delta^{-1} u x_1 y + u x_1 x_2 + \lambda x_1 + \lambda x_2, \tag{4.37} \]
where \(d \lambda = 0 \), \(u \in \mathcal{C}^2(\mathbb{R}^2 \times \mathbb{R}^2) \), \((x_1, x_2) \in \mathbb{R}^2 \), \(\lambda \in \mathbb{C} \backslash \{0\} \), there exist two independent Casimir functionals \(\lambda^{(1)} \) and \(\lambda^{(2)} \) in \(\mathbb{g}^* \) with the following gradient asymptotic expansions:
\[\lambda^{(1)}(l) \sim (u y x_2 - u y x_1) + O(l), \]
as \(l \to 0 \), and
\[\lambda^{(2)}(l) \sim (0, -1) + (u x_2 y x_1 - u x_1 y x_1) + O(l^{-2}), \]
as \(l \to \infty \). In the case, when
\[\nabla_I(y)(l) := (\lambda^{-1} \lambda^{(1)}(l)) \]
\[= \frac{k}{m=1} \left(\frac{u x_{2m}}{\lambda} \right) \frac{\partial}{\partial x_{2m}} + \frac{u y_{2m-1}}{\lambda} \frac{\partial}{\partial x_{2m}}, \]
\[\nabla_0(y)(l) := (\lambda^{(2)*}(l)) \]
\[= \frac{k}{m=1} \left(\frac{u x_{2m}}{\lambda} \right) \frac{\partial}{\partial x_{2m}} + \frac{u y_{2m-1}}{\lambda} \frac{\partial}{\partial x_{2m}}, \]
the commutativity condition (4.19) of the vector fields (4.20) leads to the following multi-dimensional analogs of the modified Plebański heavenly equation:
\[u y + \frac{k}{m=1} \left(u x_{2m} u y_{2m} - u y_{2m} u y_{2m} - 1 \right) = 0. \]

Husain heavenly equation and its generalizations: A seed element \(I \in \mathbb{g}^* = \text{diff}(\mathbb{R}^2) \) in the form
\[I = \frac{d(u y y) + d(u y y)}{\lambda + \lambda^{-1}} + \frac{2(u y y - u y y)}{\lambda^2 + 1}, \tag{4.39} \]
where \(r^2 = -1 \), \(d\lambda = 0 \), \(u \in C^2(\mathbb{R}^2 \times \mathbb{R}^2; \mathbb{C}) \), \((x_1, x_2) \in \mathbb{R}^2\), \(\lambda \in \mathbb{C} \setminus \{-i\} \), generates two independent Casimir functionals \(\gamma_1 \) and \(\gamma_2 \), with the following gradient asymptotic expansions:

\[
v_j(y(x)) \approx \begin{cases} \frac{1}{\mu^2} (-u y x_2 - i u y x_1 - i u y x_3 - i u y x_4) + O(\mu), & \mu \to -i, \\
\end{cases}
\]

as \(|\mu| \to 0 \), and

\[
v_j(2)(y(x)) \approx \begin{cases} \frac{1}{\mu^2} (u y x_2 + i u y x_1 + i u y x_3 + i u y x_4) + O(\mu), & \mu \to i, \\
\end{cases}
\]

as \(|\mu| \to 0 \). In the case, when

\[
v_h(y(x)) = (-1)^{n-1} i \frac{1}{\lambda} \left(\frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_2} \right) \frac{\partial}{\partial x_3} - i \frac{\partial}{\partial x_4} \frac{\partial}{\partial x_5},
\]

the commutativity condition (4.19) of the vector fields (4.20) leads to the Husain heavenly equation [13]:

\[
u y y_1 + u y_t + y x_2 u y x_2 - u y x_2 u y x_1 = 0,
\]

with the Lax–Sato representation given by the first order partial differential equations

\[
\frac{\partial \psi}{\partial y} = \frac{y x_2 - i u x_1}{\lambda^2 + 1} \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2},
\]

\[
\frac{\partial \psi}{\partial t} = \frac{u y x_1 + i u y x_1}{\lambda^2 + 1} \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2},
\]

where \(\psi \in C^2(\mathbb{R}^2 \times \mathbb{C}; \mathbb{C}) \).

The differential–geometric form of the seed element (4.39) is also dimension invariant subject to additional spatial variables of the torus \(\mathbb{T}^n \), \(n > 2 \), what poses a natural question of finding the corresponding multi–dimensional generalizations of the Husain heavenly equation (4.40).

If a seed element \(l \in \mathcal{H}^* \) is chosen in the form (4.39), where \(u \in C^2(\mathbb{R}^2 \times \mathbb{R}^2; \mathbb{C}) \), we have the following asymptotic expansions for gradients of \(2k \in \mathbb{N} \) independent Casimir functionals \(\gamma_j(x) \in \mathbb{H}(\mathcal{H}^*) \), where \(\gamma_j = \text{diff}(2^k \mathcal{H}^*), \)

\[
v_j(1)(y(x)) \sim \begin{cases} \frac{1}{2} (-u y x_2 - i u y x_1 + i u y x_3 + i u y x_4) + O(\mu), & \mu \to -i, \\
\end{cases}
\]

\[
v_j(2)(y(x)) \sim \begin{cases} \frac{1}{2} (u y x_2 + i u y x_1 + i u y x_3 + i u y x_4) + O(\mu), & \mu \to i, \\
\end{cases}
\]

as \(|\mu| \to 0 \). In the case, when

\[
v_h(y(x)) = \begin{cases} \frac{1}{\lambda} \left(\frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2} \right) \frac{\partial}{\partial x_3} - i \frac{\partial}{\partial x_4} \frac{\partial}{\partial x_5}, & \lambda \to i, \\
\end{cases}
\]

The general Monge heavenly equation and its generalizations: A seed element \(l \in \mathcal{H}^* \) is taken in the form

\[
l = d u y + \lambda^{-1} (d x_1 + d x_2),
\]

where \(u \in C^2(\mathbb{R}^2 \times \mathbb{R}^2; \mathbb{C}) \), \((x_1, x_2, x_3, x_4) \in \mathbb{T}^4\), \(\lambda \in \mathbb{C} \setminus \{0\} \), generates four independent Casimir functionals \(\gamma_1 \), \(\gamma_2 \), \(\gamma_3 \) and \(\gamma_4 \), whose gradients have the following asymptotic expansions:

\[
v_j(1)(y(x)) \approx \begin{cases} \frac{1}{2} (-u y x_2 - i u y x_1 + i u y x_3 + i u y x_4) + O(\mu), & \mu \to -i, \\
\end{cases}
\]

\[
v_j(2)(y(x)) \approx \begin{cases} \frac{1}{2} (u y x_2 + i u y x_1 + i u y x_3 + i u y x_4) + O(\mu), & \mu \to i, \\
\end{cases}
\]

as \(|\mu| \to 0 \). In the case, when

\[
v_h(y(x)) = \begin{cases} \frac{1}{\lambda} \left(\frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_2} \right) \frac{\partial}{\partial x_3} + i \frac{\partial}{\partial x_4} \frac{\partial}{\partial x_5}, & \lambda \to i, \\
\end{cases}
\]
\(v_j^{(2)}(0) \sim (1,0,0,0)^T + \)
\[\frac{(\kappa_2 - \kappa_1)^2 u_{xy_2} - u_{x_2} u_{yy_3} - u_{x_2} u_{y_1} - u_{x_2} u_{y_1}^2}{2k-2} + o(\kappa^2),\]
\(v_j^{(3)}(0) \sim \begin{pmatrix} 0, 0, -u_{xy_2} u_{yy_3} \end{pmatrix}^T + O(\kappa^2), \)
\(v_j^{(4)}(0) \sim \begin{pmatrix} 0, 0, -u_{xy_2} u_{yy_3} \end{pmatrix}^T + O(\kappa^2), \)
\[\text{as } \lambda \to 0. \]

The above described scheme is generalized for all \(n = 2k \), where \(k \in \mathbb{N} \), and \(n > 2 \). In this case one has \(2k \) independent Casimir functionals \(\gamma^{(1)}, \gamma^{(2)}, \gamma^{(3)} \) and \(\gamma^{(4)} \in \mathfrak{g}^* \), whose gradient asymptotic expansions are equal to the following expressions:

\(v_j^{(1)}(0) \sim \begin{pmatrix} 0, 1, 0, 0 \end{pmatrix}^T + \)
\[\frac{(\kappa_2 - \kappa_1)^2 u_{xy_2} - u_{x_2} u_{yy_3} - u_{x_2} u_{y_1} - u_{x_2} u_{y_1}^2}{2k-2} + o(\kappa^2),\]
\(v_j^{(2)}(0) \sim \begin{pmatrix} 0, 0, 1, 0 \end{pmatrix}^T + \)
\[\frac{(\kappa_2 - \kappa_1)^2 u_{xy_2} - u_{x_2} u_{yy_3} - u_{x_2} u_{y_1} - u_{x_2} u_{y_1}^2}{2k-2} + o(\kappa^2),\]
\(v_j^{(3)}(0) \sim \begin{pmatrix} 0, 0, 0, 1 \end{pmatrix}^T + \)
\[\frac{(\kappa_2 - \kappa_1)^2 u_{xy_2} - u_{x_2} u_{yy_3} - u_{x_2} u_{y_1} - u_{x_2} u_{y_1}^2}{2k-2} + o(\kappa^2),\]
\(v_j^{(4)}(0) \sim \begin{pmatrix} 0, 0, 0, 1 \end{pmatrix}^T + \)
\[\frac{(\kappa_2 - \kappa_1)^2 u_{xy_2} - u_{x_2} u_{yy_3} - u_{x_2} u_{y_1} - u_{x_2} u_{y_1}^2}{2k-2} + o(\kappa^2),\]
(4.45) is chosen as in (4.45). If

\[
\mathcal{L}(x, y) := \left(\lambda^{-1} \mathcal{L}(y)(x) + \mathcal{L}(3)(x) + \ldots + \mathcal{L}(2k-1)(x) \right) \mathbb{L} = 0.
\]

Then the commutativity condition for the Hamiltonian is the loop Lie algebra

\[
\mathcal{L}(x, y) \mathbb{L}_{(2k-1)} = \lambda \left(\lambda^{-1} \mathcal{L}(y)(x) + \mathcal{L}(3)(x) + \ldots + \mathcal{L}(2k-1)(x) \right) \mathbb{L}.
\]

Moreover, if

\[
\mathcal{L}(2k)(x, y) = -\mathcal{L}(y) + \mathcal{L}(2k)(x),
\]

then the commutativity condition for the Hamiltonian flows

\[
\frac{dl}{dt} = ad^{*} \mathcal{L}(l)(y), \quad \mathcal{L}(y)(x) = -\mathcal{L}(y)(x) + \mathcal{L}(2k)(x),
\]

naturally leads to the heavenly type equation

\[
w_{yt} = w_{x}w_{yx} - w_{y}w_{yx} - \frac{\lambda}{N} \sum_{i=1}^{N} (D_{q,i}w_{x}) (D_{q,i}w_{y}),
\]

where

\[
w \in C^{2}(\mathbb{R}^{2} \times \mathbb{R}^{2}; \mathbb{A}_{0}) \text{ and } D_{q,i} := \partial \partial_{q} \mathbb{L}_{i} = 1, \quad \mathbb{A} \text{ is a finite-dimensional Grassmann algebra.}
\]

This equation can be considered as a super-generalization of the Witham heavenly one [17,18,31] for arbitrary \(N \in \mathbb{N} \). The compatibility condition for the first order partial differential equations

\[
\nu_{y} + \frac{1}{\lambda} \left(w_{yy} + \frac{1}{2} \sum_{i=1}^{N} (D_{q,i}w_{x}) (D_{q,i}w_{y}) \right) = 0,
\]

\[
\nu_{x} + \left(-\lambda + \mathcal{L}(x, y) \right) = 0,
\]

where \(\nu \in C^{2}(\mathbb{R}^{2} \times \mathbb{R}^{2}; \mathbb{A}_{0}) \) and \(\lambda \in \mathbb{C} \setminus \{0\} \), give rise to the corresponding Lax–Sato representation of the heavenly type equation (5.4).

Moreover, based on easy calculations, one can obtain from the Casimir invariant equation the following asymptotic expansions for gradients of the Casimir invariants

\[
\nu_{L} := k \mathbb{L}_{(2k)} \in \mathbb{L}_{(2k)}, \text{ where a scalar function } C = C(x, y) \text{ satisfies a linear homogeneous ordinary differential equation}
\]

\[
C_{x} := D_{x}C_{q}, \quad Q_{y} := -(1/2)(D_{q}Q_{x}), \text{ in the superspace }
\]

\[
\mathbb{R}^{N+1}, N - 1 = \Lambda_{\mathbb{R}}^{N-1} \times \Lambda_{\mathbb{R}}^{N-1}.
\]

Moreover, \(C \in C^{0}(\mathbb{R}^{2}; \mathbb{A}_{0}) \), if

\[
\mathcal{L}(x, y) \mathbb{L}_{(2k-1)} = \lambda \left(\lambda^{-1} \mathcal{L}(y)(x) + \mathcal{L}(3)(x) + \ldots + \mathcal{L}(2k-1)(x) \right) \mathbb{L}.
\]

the commutativity condition (4.19) of the vector fields (4.20) leads to the following multi-dimensional analogs of the general Monge heavenly equation:

\[
u_{x} + u_{x} + \sum_{j=2}^{k} (u_{x}u_{xj-1}u_{xj} - u_{x}u_{xj-1}u_{xj}) = 0.
\]

Superanalogs of the Witham heavenly equation

Assume now that an element \(\mathcal{L} \in \mathbb{G}^{*} \), where \(\mathbb{G} := \text{diff}_0(\mathbb{C}^{1|N}) \oplus \text{diff}_0(\mathbb{C}^{1|N}) \) is the loop Lie algebra of the superconformal diffeomorphisms group \(\text{diff}_0(\mathbb{C}^{1|N}) \) of vector fields on the 1|N-dimensional super-torus.

Reference:

N is an odd natural number, and suitably $C \in \mathbb{C}^c(T\mathbb{L}_1; \mathbb{A}_0)$, if N is an even integer. In the case of $N = 1$ one has

$$l = C_1(e x D_{\mathcal{S}} \text{a} \frac{1}{2} (3)^{\frac{3}{2}}),$$

where $C_1 \in \mathbb{R}$ is some real constant.

If $N=1$ and $C_1 = 1$, the corresponding seed-element $l \in \mathfrak{g}_c^\star$, related to the asymptotic expansions (5.1) and (5.2), can be reduced to

$$l = [i^{-1} (e x D_{\mathcal{S}} w_{\mathcal{S}} (\frac{3}{2}) \omega) w_{\mathcal{S}} (\frac{3}{2}) + \xi x / 2 + \xi (2u x + l)] dx,$$

where $w := u + \partial x$, $u \in \mathbb{C}^c(\mathbb{R}^2 \times \mathbb{S}^1; \mathbb{A}_0)$ and $\xi \in \mathbb{C}^c(\mathbb{R}^2 \times \mathbb{S}^1; \mathbb{A}_0)$.

The Lax-Sato vector field integrability structure of the Monge type dynamical systems

Let us consider on a functional manifold $M \subset \mathbb{C}^c(\mathbb{F} / 2 \pi \mathbb{Z}; \mathbb{R}^2)$ the following commuting to each other nonlinear dispersionless Monge type dynamical systems:

$$u_y = -(u^2 + 2v) x,$$

$$v_y = (v^2 - 2uv) x,$$

with respect to the evolution parameter $y \in \mathbb{R}$, and $u_t = (\frac{3}{2} v^2 - 6uv - u^3) x$, $v_t = (-v^3 - 3uv^2 + 3u^2 v - 3v^2) x$ (6.2) with respect to the evolution parameter $t \in \mathbb{R}$, $(u, v) \in M$.

Choose now, by definition, a seed element $l \in \mathfrak{g}_c^\star$ in the next form:

$$l = (ux^2 + (v + u^2) x) dx + (\lambda^2 + 2ui + v + u^2) d\lambda =$$

$$= \frac{1}{2} \lambda^3 + u^2 [v + u^2 (\lambda)],$$

and calculate the vector fields on the complexified torus $\mathbb{T}_C^2 := \mathbb{T}^2 \otimes \mathbb{C}$

$$\text{vh}(y) := \text{vh}(1) l = (\lambda + u) \frac{\partial}{\partial \lambda} - u \frac{\partial}{\partial u}$$

$$\text{vh}(t) := \text{vh}(2) l = (\lambda^2 + 2ui + v + u^2) \frac{\partial}{\partial u} - (ux^2 + v + u^2) \frac{\partial}{\partial \lambda},$$

(6.4) corresponding to the Casimir functionals

$h^{(1)}(l) \in H(l^c), j = 1, 2,$

and satisfying the determining relationships

$$ad^* \text{vh}(l) = 0, j = 1, 2,$$

satisfying the determinations of $H(l) \in H^c(l^c), j = 1, 2$, for which there hold the following asymptotic expansions

$$\text{vh}(1) \left(u, l\right) l^1 \left(u, l\right) l^0 \left(u, l\right) l^{-1},$$

$$\text{vh}(2) \left(u, l\right) l^2 \left(u, l\right) l^1 \left(u, l\right) l^0 \left(u, l\right) l^{-1},$$

as $|l| \rightarrow \infty$. As a result of the last relationships one easily obtains that

$$\left[\frac{\partial}{\partial x} + \text{vh}(y) (\frac{\partial}{\partial x} + \text{vh}(t))\right] = 0,$$

(6.6)

that is the vector fields (6.4) on \mathbb{T}_C^2 are commuting to each other, thus presenting their Lax-Sato type integrability representation. As a consequence we have stated that the Monge type dispersionless dynamical system is a completely integrable flow on the functional manifold M.

The Lax-Sato type integrability of the classical Kor-teweg-de Vries dynamical system $u_t + 6u u_x + u_{xx} = 0$

We start from the following well known proposition.

Proposition 7.1: The system of two vector fields

$$e x (\frac{27}{2} \lambda^4 - 4i \lambda^3 - 2u u_x + 2i u_y - u_{yx} - 2u^2)\overline{x}_4$$

$$- e x (2u - 4i \lambda^2)\overline{x}_2$$

(7.1)

and

$$e x \frac{\partial}{\partial y} = \frac{\partial}{\partial x}$$

(7.2)

on the complexified torus $\mathbb{T}_C^2 := \mathbb{T}^2 \otimes \mathbb{C}$ with respect to the real evolution parameters $t, y \in \mathbb{R}$ and local parameter $x \in \mathbb{T}_C^2$, depending on a complex parameter $\lambda \in \mathbb{C}$, generates the following equivalent system of linear vector fields on the functional space $C^2(\mathbb{R}^2 \times \mathbb{Z}; \mathbb{C})$

$$X(0) = \frac{\partial}{\partial x} + [(2u - 4i \lambda^2)\overline{x}_4 + (4u \lambda^3 + 3u - 2u^2)\overline{x}_2] \frac{\partial}{\partial \lambda},$$

$$X(0) = \frac{\partial}{\partial y} + (i x_1 + u x_2) \frac{\partial}{\partial x_1} + (i x_1 x_2 - x_1) \frac{\partial}{\partial x_2},$$

(7.3)

and commuting to each other, that is

$$[X(0), X(0)] = 0$$

(7.4)

for all $t, y \in \mathbb{R}$.

The vector field generators

$$\text{vh}(t)(\overline{x}) := \text{vh}(t)(\overline{x}), \overline{x}, \text{ vh}(y)(\overline{x}) := \text{vh}(y)(\overline{x}), \overline{x}, (7.5)$$

where, by definition,

$$\text{vh}(t)(\overline{x}) = \lambda (u_x y - u_y x + 2u u_x)\overline{x}_2 + \lambda x \left[2ux_1 + 2u y x_1\right] +$$

$$+ \lambda^2 \left[4ux_2 - 4ux_1\right] + \lambda^3 \left[-4ux_1\right],$$

$$\text{vh}(y)(\overline{x}) = \lambda x \left[2ux_2 + 2u y x_1\right] + \lambda x \left[-4ux_1\right],$$

(7.6)

are holomorphic sections of $\mathcal{C}(\mathbb{T}_C^2)$. The latter can be naturally interpreted as elements of the holomorphic (in $\lambda \in \mathbb{D}_+$ on the unit disc $\mathbb{D}_+ \subset \mathbb{C}$) subalgebra \mathfrak{g}_c of the holomorphic loop Lie algebra $\mathfrak{g}_c := \mathfrak{diff}(\mathbb{T}_C^2) = \mathfrak{g}_c \otimes \mathfrak{g}_c$ of
related with some its smooth Casimir invariants $h^0(y), h(y) \in I(\mathbb{R}^n)$, \(\tilde{\phi}^* \subset \Lambda^1(\mathbb{R}^2) = \Lambda^1(\mathbb{R}^2) \otimes \mathbb{C} \) on the finite-dimensional invariant adjoint space \(\tilde{\phi}^* \), calculated at some point \(\tilde{l} \in \tilde{\phi}^* \), where

\[
I := \int_1 \frac{\partial}{\partial x} y = \sum_{j=1}^N \frac{1}{\partial j} x_j, \tag{7.7}
\]

whose coefficients \(\frac{1}{\partial j} \in \Gamma(\mathbb{R}^n(\mathbb{R}^2)), j = 1,2 \), can be taken in the following polynomial form:

\[
I := \sum_{m=0}^N \sum_{j=1,2} a(m) \phi_j x^m, \tag{7.8}
\]

for some set of matrix valued functions \(\{a(m)\} \in \mathbb{C}^2(\mathbb{R}^2); \text{End} \ puzzles \mathbb{C}^2(\mathbb{R}^2) \in \mathbb{C}^2 \). Casimir functionals \(h \in I(\tilde{\phi}) \) satisfy at the point \(\tilde{l} \in \tilde{\phi}^* \) the following invariance equation

\[
\text{ad} \frac{1}{\partial j} = 0, \tag{7.9}
\]

where \(\phi := \text{vhl}(l) = \text{vhl}(l), \delta / \delta x > \in \tilde{\phi} \) are vector fields, coinciding with ones generated by vector expressions \((7.6) \). The determining equation \((7.9) \) has a general vector field solution

\[
\phi_j := \sum_{k=0}^N \sum_{m=0}^N \phi_j x^m \quad \text{asymptotic expansions} \quad \phi_j := \sum_{k=0}^N \sum_{m=0}^N \phi_j x^m \tag{7.10}
\]

and satisfy for every \(k = 1,2 \) the following differential relationships

\[
\sum_{k=1,2} \frac{\partial}{\partial k} (a_k x^k) + \sum_{j=1,2} \frac{1}{\partial j} x^j \phi_j = 0. \tag{7.12}
\]

If now to define the matrices

\[
\phi(a) := \sum_{m=0}^N a(m) x^m \quad \text{for} \quad m = \alpha_0, \mathbb{N}, \quad \text{as a result of simple calculations, one obtains a system of the matrix algebraic equations}
\]

\[
\sum_{m=0}^N a(m) x^m + \sum_{m=0}^N a(m) x^m + \sum_{m=0}^N a(m) x^m = 0. \tag{7.13}
\]

for \(p \in \mathbb{Z} \), where by definition, the trace \(\text{tr} \phi(a) := \sum_{j=1,2} x_j \), and whose solution, a set of matrices \(\{a(m)\} \in \text{End} \ C^2(\mathbb{R}^2) \), generates the searched for seed element \(\tilde{l} \in \tilde{\phi}^* \) in the following form:

\[
\tilde{l} := \int_1^2 \frac{\partial}{\partial x} y + \frac{1}{2} x^m + \frac{1}{2} x^m + \frac{1}{2} x^m + \frac{1}{2} x^m \text{d}x. \tag{7.14}
\]

For solving a system of the matrix algebraic equations \((4.22) \) we put the degree \(N = 2 \) and solve successively the following three matrix algebraic equations:

\[
\sum_{m=0} a(m) x^m + \sum_{m=0} a(m) x^m + \sum_{m=0} a(m) x^m = 0 \tag{7.15}
\]

at \(p = 0 \),

\[
\sum_{m=0} a(m) x^m + \sum_{m=0} a(m) x^m + \sum_{m=0} a(m) x^m = 0 \tag{7.16}
\]

at \(p = 1 \), and

\[
\sum_{m=0} a(m) x^m + \sum_{m=0} a(m) x^m + \sum_{m=0} a(m) x^m = 0 \tag{7.17}
\]

at \(p = 2 \). For example, a \(p = 2 \) they naturally reduce to the following matrix equation

\[
a(0) x^2 + a(0) x^2 + a(0) x^2 = 0, \tag{7.18}
\]

whose general solution gives rise to an exact expression for the seed element \((7.8) \), and thus to the representation of the Korteweg-de Vries dynamical system as a Hamiltonian flow

\[
\delta I / \delta t = -\text{ad}^* x^2 \tag{7.19}
\]

exactly equivalent to that on the functional manifold \(M \). More detailed properties of the matrix equation \((7.18) \) and analysis of its solutions is planned to be presented elsewhere.

The group orbit structure of the Chaplygin hydrodynamical system

Consider the following Chaplygin [32–35], hydrodynamic system

\[
u_t = -u \nu_x - k \nu_x v^3, \tag{8.1}
\]

\[
u_t = -(u \nu)_x, \tag{8.2}
\]

where \(k \in \mathbb{R} \) is a constant parameter, \((u,v) \in \mathbb{C}^2(\mathbb{R} \times 2 \pi \mathbb{Z}) \) are \(2 \pi \) periodic dynamical variables on the functional manifold \(M \) with respect to the evolution parameter \(t \in \mathbb{R} \). To describe the geometric structure of the system \((8.1) \), let us define the loop Lie algebra \(\tilde{\phi}^* := \tilde{\text{diff}}(\mathbb{R}^1_0) \) on the one-dimensional complexified torus \(\mathbb{R}^1_0 \) and take a seed element \(\tilde{l} \in \tilde{\phi}^* \) in the following form:

\[
\tilde{l} := \int_1^2 \frac{\partial}{\partial x} y + \frac{1}{2} x^m + \frac{1}{2} x^m + \frac{1}{2} x^m + \frac{1}{2} x^m \text{d}x. \tag{8.2}
\]

where we have put \(\alpha := kv^{-2} + u^2 \), and calculate asymptotic expansions of gradients for some Casimir functionals \(h^0(t), h(t) \) and \(h(s) \in I(\tilde{\phi}^*) \):

\[
\text{vhl}(t)_l : = \text{vhl}(4)_l, \text{vhl}(5)_l : = \text{vhl}(6)_l, (8.3)
\]
where
\[\mathbf{v}_h(2)(l) = \left[\begin{array}{c}
-2 \\
0 \\
0
\end{array} \right] x^2 + \left[\begin{array}{c}
u_x \\
0 \\
0
\end{array} \right] x^1 + \left[\begin{array}{c}
u \\
0 \\
0
\end{array} \right] x^0 + O(x^{-1})
\]
\[\mathbf{v}_h(4)(l) = \left[\begin{array}{c}
-8 \\
0 \\
0
\end{array} \right] x^4 + \left[\begin{array}{c}
u_x \\
0 \\
0
\end{array} \right] x^3 + \left[\begin{array}{c}
u \\
0 \\
0
\end{array} \right] x^2 +
\]
\[+ \left[\begin{array}{c}
\alpha x \\
0 \\
0
\end{array} \right] x^1 + \left[\begin{array}{c}
\alpha \\
0 \\
0
\end{array} \right] x^0 + O(x^{-1})
\] (8.4)
and
\[\mathbf{v}_h(6)(l) = \left[\begin{array}{c}
-2 \\
0 \\
0
\end{array} \right] x^6 + \left[\begin{array}{c}
u_x \\
0 \\
0
\end{array} \right] x^5 + \left[\begin{array}{c}
u \\
0 \\
0
\end{array} \right] x^4 +
\]
\[+ \left[\begin{array}{c}
\alpha x / 4 + u w_x \\
0 \\
0
\end{array} \right] x^3 + \left[\begin{array}{c}
\alpha / 4 - 1 / 2 u^2 \\
0 \\
0
\end{array} \right] x^2 +
\]
\[+ \left[\begin{array}{c}
0 \\
-(u w_x) / 8 \\
0
\end{array} \right] x^1 + \left[\begin{array}{c}
0 \\
0 \\
0
\end{array} \right] x^0 + O(x^{-1}),
\] (8.5)
as \(\lambda \rightarrow \infty \). The corresponding Lax–Sato vector field generators are, by definition, equal to the expressions
\[\mathbf{v}_h(l)(l) := \{ \mathbf{v}_h(2)(l) \}_l = \left[\begin{array}{c}
-2 \\
0 \\
0
\end{array} \right] x^2 + \left[\begin{array}{c}
u_x \\
0 \\
0
\end{array} \right] x^1 + \left[\begin{array}{c}
u \\
0 \\
0
\end{array} \right] x^0
\]
\[\mathbf{v}_h(y)(l) := \{ \mathbf{v}_h(4)(l) \}_l = \left[\begin{array}{c}
-8 \\
0 \\
0
\end{array} \right] x^4 +
\]
\[+ \left[\begin{array}{c}
\alpha x \\
0 \\
0
\end{array} \right] x^3 + \left[\begin{array}{c}
\alpha / 4 - 1 / 2 u^2 \\
0 \\
0
\end{array} \right] x^2 +
\]
\[+ \left[\begin{array}{c}
0 \\
-(u w_x) / 8 \\
0
\end{array} \right] x^1 + \left[\begin{array}{c}
0 \\
0 \\
0
\end{array} \right] x^0
\] (6)
and
\[\mathbf{v}_h(s)(l) := \{ \mathbf{v}_h(6)(l) \}_l = \left[\begin{array}{c}
-2 \\
0 \\
0
\end{array} \right] x^6 + \left[\begin{array}{c}
u_x \\
0 \\
0
\end{array} \right] x^5 + \left[\begin{array}{c}
u \\
0 \\
0
\end{array} \right] x^4 +
\]
\[+ \left[\begin{array}{c}
\alpha x / 4 + u w_x \\
0 \\
0
\end{array} \right] x^3 + \left[\begin{array}{c}
\alpha / 4 - 1 / 2 u^2 \\
0 \\
0
\end{array} \right] x^2 +
\]
\[+ \left[\begin{array}{c}
0 \\
-(u w_x) / 8 \\
0
\end{array} \right] x^1 + \left[\begin{array}{c}
0 \\
0 \\
0
\end{array} \right] x^0
\] (7)
as \(\lambda \rightarrow \infty \). Based now on the gradient expressions (8.6) and (8.7), one can calculate successively the following evolution flows:
\[\frac{\partial l}{\partial t} = -ad^e \mathbf{v}_h(1)(l) \sim \left[\begin{array}{c}
\nu_x \\
0 \\
0
\end{array} \right] x^1 + \left[\begin{array}{c}
u \\
0 \\
0
\end{array} \right] x^0
\]
(8.8)
with respect to the evolution parameter \(t \in \mathbb{R} \), being equivalent to the hydrodynamical system (8.1),
\[\frac{\partial l}{\partial y} = -ad^e \mathbf{v}_h(1)(l) \sim \left[\begin{array}{c}
\nu_x \\
0 \\
0
\end{array} \right] x^1 + \left[\begin{array}{c}
u \\
0 \\
0
\end{array} \right] x^0
\]
(8.9)
with respect to the evolution parameter \(y \in \mathbb{R} \), and
\[\frac{\partial l}{\partial s} = -ad^e \mathbf{v}_h(2)(l) \sim \left[\begin{array}{c}
\nu_x \\
0 \\
0
\end{array} \right] x^1 + \left[\begin{array}{c}
u \\
0 \\
0
\end{array} \right] x^0
\]
(10)
with respect to the evolution parameter \(s \in \mathbb{R} \). Insomuch, by construction, all these flows are commuting to each other, that can be rewritten as the following set
\[[\partial / \partial t + \mathbf{v}_h(1)(l), \partial / \partial y + \mathbf{v}_h(2)(l)] = 0,
\]
\[[\partial / \partial t + \mathbf{v}_h(1)(l), \partial / \partial y + \mathbf{v}_h(3)(l)] = 0,
\]
(8.11)
of commuting to each other Lax–Sato type vector fields on the complexified torus \(\mathbb{T}_1^1 \) for all parameters \(t, y \) and \(s \in \mathbb{R} \), giving rise to three new compatible systems of integrable heavenly type dispersionless differential equations. The obtained above result can be formulated as the following theorem.

Theorem 8.1: The Chaplygin hydrodynamic system (8.8) is equivalent to the completely integrable Hamiltonian system (8.10) on the adjoint space \(\mathfrak{g}^* \) to the loop Lie algebra \(\mathfrak{g} \simeq \text{diff}(\mathbb{T}_1^1) \) of vector fields on the complexified torus \(\mathbb{T}_1^1 \). The related Casimir functionals on \(\mathfrak{g}^* \) generate an infinite hierarchy of commuting to each other additional both Hamiltonian systems, like (8.9) and (8.10), and Lax–Sato type vector fields on \(\mathbb{T}_1^1 \), resulting in some new heavenly type dispersionless equations.

As it was demonstrated in [22]. Chaplygin hydrodynamic system (8.8) is closely related with a class of completely integrable Monge type equations, whose geometric structure was also recently analyzed in [14], using a different approach, based on the Grassmann manifold embedding properties of general differential systems defined on jet-submanifolds. The latter poses an interesting problem of finding relationships between different geometric approaches to describing completely integrable dispersionless differential systems.

Conclusion

Within the review we described the Lie–algebraic approach to studying vector fields on the complexified \(n \)-dimensional torus and the related Lie–algebraic structures, which made it possible to construct a wide class of multi-dimensional dispersionless integrable systems, describing conformal structure generating equations of modern mathematical physics. There was also described a modification of the approach subject to the spatial dimensional invariance and meromorphicity of the related differential-geometric structures, giving rise to new generalized multi-dimensional conformal metric equations. There have been analyzed in detail the related differential-geometric structures of the Einstein–Weyl conformal metric equation, the modified Einstein–Weyl metric equation, the Dunajski heavenly equation system, the first and second conformal structure generating equations, the inverse first Shabat reduction heavenly equation, the first and modified Plebański heavenly equations and its multi-dimensional generalizations, the Husain heavenly equation and its multi-dimensional generalizations, the general Monge equation and its multi-dimensional generalizations and superconformal analogs of the Whitham heavenly equation. We also investigated geometric structures of a class of spatially one-dimensional completely integrable Korteweg–de Vries and Chaplygin type hydrodynamic systems, which proved to be deeply connected with differential systems on the complexified
torus and the related diffeomorphisms group orbits on them. An interesting inference from the construction, presented in the work, is the existence of dual seed elements and the related compatible hierarchies of the integrable Chaplygin type hydrodynamic evolution systems, whose generating Casimir functionals are related to each other via a simple affine shifing symmetry.

Acknowledgements

The authors are cordially indebted to Anatolij M. Samoilenko, Gerald Goldin, Denis Blackmore, Maciej Blaszk, Blażej Szablikowski, Maxim Pavlov and Artur Sergyeyev for useful comments and remarks, especially for elucidating references, which were very instrumental when preparing a manuscript. They also are indebted to Prof. Anatol Odzijewicz for fruitful and instructive discussions during the XXXVIII Workshop on Geometric Methods in Physics held on June 30 – July 06, 2019 in Białowieża, Poland. A.P. thanks also the Departments of Mathematical Sciences of the Rutgers University and the NJIT University of Technology (NJ, USA) for invitations to visit them during the Spring Semester-2019, the Departments of Mathematical Sciences of the Rutgers University and the NJIT University of Technology (NJ, USA) for invitations to visit them during the Spring Semester-2019, where there was prepared an essential part of the present work. The acknowledgements belong to the Department of Physics, Mathematics and Computer Science of the Cracow University of Technology for a local research grant F-2/370/2018/DS.

References

<table>
<thead>
<tr>
<th>Citation</th>
<th>Reference</th>
</tr>
</thead>
</table>

Discover a bigger Impact and Visibility of your article publication with Peertechz Publications

Highlights
- Signatory publisher of ORCID
- Signatory Publisher of DORA (San Francisco Declaration on Research Assessment)
- Articles archived in world’s renowned service providers such as Portico, CNKI, ASIRIS, TDNet, Base (Bielefeld University Library), CrossRef, Scilit, J-Gate etc.
- Journals indexed in ICMJE, SHERPA/RoMEO, Google Scholar etc.
- OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting)
- Dedicated Editorial Board for every journal
- Accurate and rapid peer review process
- Increased citations of published articles through promotions
- Reduced timeline for article publication

Submit your articles and experience a new surge in publication services https://www.peertechz.com/submission. Peertechz journals wishes everlasting success in your every endeavour.

Copyright: © 2019 Hentosh OE, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.