Abstract

    Open Access Research Article Article ID: GJODMS-4-124

    Sinapic Acid Regulates Glucose Homeostasis by Modulating the Activities of Carbohydrate Metabolizing Enzymes in High Fat Diet Fed-Low Dose STZ Induced Experimental Type 2 Diabetes in Rats

    Ramesh Nithya, Vellai Roshana Devi, Rajendran Selvam and Sorimuthu Pillai Subramanian*

    Diabetes Mellitus is a chronic metabolic disorder arises due to absolute lack of insulin secretion (T1DM) or its action or both (T2DM). Alterations in glucose metabolism in DM are frequently accompanied by impairment in the activities of enzymes that regulate carbohydrate metabolism. Liver is a vital organ that acts as primary site of endogenous glucose production through gluconeogenesis or glycogenolysis. The enzymes that control glucose metabolism in the liver tissue are considered as potential targets for the maintenance of normal glycemic control in diabetic individuals. Search for new drugs with more efficacies and without side effects preferably from plant origin continues. Sinapic acid is one such phytochemical which lacks scientific validation for its folklore use. It is a naturally occurring carboxylic acid belongs to phenylpropanoid family. It is widely distributed in the various sources such as rye, mustard, berries and vegetables In the present study it was aimed to systematically study the efficacy of sinapic acid (25mg/kg.b.w./rat for 30 days) in the regulation of glucose homeostasis modulating the activities of carbohydrate metabolizing enzymes in hepatic tissues of high fat diet fed-low dose STZ induced experimental type 2 diabetes in rats. The altered activities of carbohydrate metabolizing enzymes such as glucokinase, pyruvate kinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase in hepatic tissues of diabetic rats were significantly reverted to near normalcy upon oral treatment with sinapic acid. In addition, oral administration of sinapic acid to experimental diabetic groups of rats showed significant reduction in the levels of fasting blood glucose and glycosylated hemoglobin and increased level of plasma insulin and hemoglobin. Thus, the present data demonstrated that the oral administration of sinapic acid to diabetic rats regulates glucose homeostasis by regulating the activities of carbohydrate metabolizing enzymes.

    Keywords: Sinapic acid; High fat diet, Type 2 diabetes; Insulin resistance; Carbohydrate metabolizing enzymes

    Published on: Aug 22, 2017 Pages: 54-61

    Full Text PDF Full Text HTML DOI: 10.17352/2455-8583.000024
    CrossMark Publons Harvard Library HOLLIS Search IT Semantic Scholar Get Citation Base Search Scilit OAI-PMH ResearchGate Academic Microsoft GrowKudos Universite de Paris UW Libraries SJSU King Library SJSU King Library NUS Library McGill DET KGL BIBLiOTEK JCU Discovery Universidad De Lima WorldCat VU on WorldCat

    Indexing/Archiving

    Case Reports

    Pinterest on GJODMS